Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(4)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36850887

ABSTRACT

Due to the complexity of the fracture mechanisms in composites, monitoring damage using a vibration-based structural response remains a challenging task. This is also complex when considering the physical implementation of a health monitoring system with its numerous uncertainties and constraints, including the presence of measurement noise, changes in boundary and environmental conditions of a tested object, etc. Finally, to balance such a system in terms of efficiency and cost, the sensor network needs to be optimized. The main aim of this study is to develop a cost- and performance-effective data-driven approach to monitor damage in composite structures and validate this approach through tests performed on a physically implemented structural health monitoring (SHM) system. In this study, we combined the mentioned research problems to develop and implement an SHM system to monitor delamination in composite plates using data combined from finite element models and laboratory experiments to ensure robustness to measurement noise with a simultaneous lack of necessity to perform multiple physical experiments. The developed approach allows the implementation of a cost-effective SHM system with validated predictive performance.

2.
Sensors (Basel) ; 22(10)2022 May 10.
Article in English | MEDLINE | ID: mdl-35632030

ABSTRACT

The article concerns the issue of non-invasive moisture sensing in building materials. Two techniques that enable evaluating the value of the relative permittivity of the material, being the measure of porous material moisture, have been utilized for the research. The first is the microwave technique that utilizes the non-contact measurement of velocity of microwave radiation across the tested material and the second is the time domain reflectometry (TDR) technique based on the measurement of electromagnetic pulse propagation time along the waveguides, being the elements of sensor design. The tested building material involved samples of red ceramic brick that differed in moisture, ranging between 0% and 14% moisture by weight. The main goal of the research was to present the measuring potential of both techniques for moisture evaluation as well as emphasize the advantages and disadvantages of each method. Within the research, it was stated that both methods provide similar measuring potential, with a slight advantage in favor of a microwave non-contact sensor over surface TDR sensor designs.


Subject(s)
Construction Materials , Microwaves , Porosity
3.
Sensors (Basel) ; 22(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35632276

ABSTRACT

Optimal sensor placement is one of the important issues in monitoring the condition of structures, which has a major influence on monitoring system performance and cost. Due to this, it is still an open problem to find a compromise between these two parameters. In this study, the problem of optimal sensor placement was investigated for a composite plate with simulated internal damage. To solve this problem, different sensor placement methods with different constraint variants were applied. The advantage of the proposed approach is that information for sensor placement was used only from the structure's healthy state. The results of the calculations according to sensor placement methods were subsets of possible sensor network candidates, which were evaluated using the aggregation of different metrics. The evaluation of selected sensor networks was performed and validated using machine learning techniques and visualized appropriately. Using the proposed approach, it was possible to precisely detect damage based on a limited number of strain sensors and mode shapes taken into consideration, which leads to efficient structural health monitoring with resource savings both in costs and computational time and complexity.


Subject(s)
Monitoring, Physiologic , Humans , Machine Learning , Monitoring, Physiologic/methods , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...