Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Mol Divers ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38246950

ABSTRACT

Long-chain imidazole-based ionic liquids (compounds 2, 4, 9) and lysosomotropic detergents (compounds 7, 3, 8) with potent anticancer activity were synthesized. Their inhibitory activities against neuroblastoma and leukaemia cell lines were predicted by the new in silico QSAR models. The cytotoxic activities of the synthesized imidazole derivatives were investigated on the SK-N-DZ (human neuroblastoma) and K-562 (human chronic myeloid leukaemia) cell lines. Compounds 2 and 7 showed the highest in vitro cytotoxic effect on both cancer cell lines. The docking procedure of compounds 2 and 7 into the NAD+ coenzyme binding site of deacetylase Sirtuin-1 (SIRT-1) showed the formation of protein-ligand complexes with calculated binding energies of - 8.0 and - 8.1 kcal/mol, respectively. The interaction of SIRT1 with compounds 2, 7 and 9 and the interaction of Bromodomain-containing protein 4 (BRD4) with compounds 7 and 9 were also demonstrated by thermal shift assay. Compounds 2, 4, 7 and 9 inhibited SIRT1 deacetylase activity in the SIRT-Glo assay. Compounds 7 and 9 showed a moderate inhibitory activity against Aurora kinase A. In addition, compounds 3, 4, 8 and 9 inhibited the Janus kinase 2 activity. The results obtained showed that long-chain imidazole derivatives exhibited cytotoxic activities on K562 leukaemia and SK-N-DZ neuroblastoma cell lines. Furthermore, these compounds inhibited a panel of molecular targets involved in leukaemia and neuroblastoma tumorigenesis. All these results suggest that both long-chain imidazole-based ionic liquids and lysosomotropic detergents may be an effective alternative for the treatment of neuroblastoma and chronic myeloid leukemia and merit further investigation.

2.
Materials (Basel) ; 16(20)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37895599

ABSTRACT

This study developed a technical task associated with the formation of welded joints based on biodegradable polymers and their subsequent physicochemical characterization. The primary objective was to establish the effect of the welding process and modification of natural poly(3-hydroxybutyrate) (PHB) with N,N-dibutylundecenoylamide (DBUA) as a plasticizing agent on the structure and properties of PHB-based biopolymer materials as well as the process and structure of welded joints formation using ultrasonic welding technique. The weldability of biodegradable layers based on PHB and PHB/DBUA mixture was ultrasonically welded and optimized using a standard Branson press-type installation. The effect of the DBUA plasticizer and welding process on the structure of PHB-based biodegradable material was investigated using scanning electron microscopy, X-ray diffraction, FT-IR spectroscopy, differential scanning calorimetry, and thermomechanical analysis. The results confirmed that the DBUA acted as an effective plasticizer of PHB, contributing to lower crystallinity of the PHB/DBUA mixture (63%) in relation to the crystallinity degree of pure PHB film (69%). Ultrasonic welding resulted in an additional increase (approximately 8.5%) in the degree of crystallinity in the PHB/DBUA in relation to the initial PHB/DBUA mixture. The significant shift toward lower temperatures of the crystallization and melting peaks of PHB modified with DBUA were observed using DSC concerning pure PHB. The melt crystallization process of PHB was affected by welding treatment, and a shift toward higher temperature was observed compared with the unwelded PHB/DBUA sample. The butt-welded joints of biodegradable PHB/DBUA materials made using the ultrasonic method tested for tensile strength have damaged the area immediately outside the joining surface.

3.
Sci Rep ; 13(1): 5889, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37041312

ABSTRACT

This paper investigates thermal transport in a nanocomposite system consisting of a porous silicon matrix filled with ionic liquid. Firstly, the thermal conductivity and heat capacity of two imidazolium and one ammonium ionic liquids were evaluated using the photoacoustic approach in piezoelectric configuration and differential scanning calorimetry, respectively. Then, the thermal transport properties of the composite system "ionic liquid confined inside porous silicon matrix" were investigated with the photoacoustic approach in gas-microphone configuration. The results demonstrated a significant enhancement of the thermal conductivity of the composite system when compared to the individual components, i.e. (i) more than two times for pristine porous silicon and (ii) more than eight times for ionic liquids. These results provide new paths for innovative solutions in the field of thermal management, particularly in the development of highly efficient energy storage devices.

4.
Antibiotics (Basel) ; 11(4)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35453241

ABSTRACT

A previously developed model to predict antibacterial activity of ionic liquids against a resistant A. baumannii strain was used to assess activity of phosphonium ionic liquids. Their antioxidant potential was additionally evaluated with newly developed models, which were based on public data. The accuracy of the models was rigorously evaluated using cross-validation as well as test set prediction. Six alkyl triphenylphosphonium and alkyl tributylphosphonium bromides with the C8, C10, and C12 alkyl chain length were synthesized and tested in vitro. Experimental studies confirmed their activity against A. baumannii as well as showed pronounced antioxidant properties. These results suggest that phosphonium ionic liquids could be promising lead structures against A. baumannii.

5.
Int J Mol Sci ; 23(2)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35054915

ABSTRACT

The choice of effective biocides used for routine hospital practice should consider the role of disinfectants in the maintenance and development of local resistome and how they might affect antibiotic resistance gene transfer within the hospital microbial population. Currently, there is little understanding of how different biocides contribute to eDNA release that may contribute to gene transfer and subsequent environmental retention. Here, we investigated how different biocides affect the release of eDNA from mature biofilms of two opportunistic model strains Pseudomonas aeruginosa ATCC 27853 (PA) and Staphylococcus aureus ATCC 25923 (SA) and contribute to the hospital resistome in the form of surface and water contaminants and dust particles. The effect of four groups of biocides, alcohols, hydrogen peroxide, quaternary ammonium compounds, and the polymeric biocide polyhexamethylene guanidine hydrochloride (PHMG-Cl), was evaluated using PA and SA biofilms. Most biocides, except for PHMG-Cl and 70% ethanol, caused substantial eDNA release, and PHMG-Cl was found to block biofilm development when used at concentrations of 0.5% and 0.1%. This might be associated with the formation of DNA-PHMG-Cl complexes as PHMG-Cl is predicted to bind to AT base pairs by molecular docking assays. PHMG-Cl was found to bind high-molecular DNA and plasmid DNA and continued to inactivate DNA on surfaces even after 4 weeks. PHMG-Cl also effectively inactivated biofilm-associated antibiotic resistance gene eDNA released by a pan-drug-resistant Klebsiella strain, which demonstrates the potential of a polymeric biocide as a new surface-active agent to combat the spread of antibiotic resistance in hospital settings.


Subject(s)
Anti-Infective Agents/pharmacology , Biofilms/drug effects , DNA, Bacterial/drug effects , Disinfectants/pharmacology , Guanidines/pharmacology , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , DNA, Bacterial/chemistry , Disinfectants/chemistry , Guanidines/chemical synthesis , Guanidines/chemistry , Nucleic Acid Conformation/drug effects , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Structure-Activity Relationship
6.
Astrobiology ; 21(6): 706-717, 2021 06.
Article in English | MEDLINE | ID: mdl-33646011

ABSTRACT

Cellulose is a widespread macromolecule in terrestrial environments and a major architectural component of microbial biofilm. Therefore, cellulose might be considered a biosignature that indicates the presence of microbial life. We present, for the first time, characteristics of bacterial cellulose after long-term spaceflight and exposure to simuled Mars-like stressors. The pristine cellulose-based pellicle membranes from a kombucha microbial community (KMC) were exposed outside the International Space Station, and after their return to Earth, the samples were reactivated and cultured for 2.5 years to discern whether the KMC could be restored. Analyses of cellulose polymer integrity and mechanical properties of cellulose-based pellicle films, as well as the cellulose biosynthesis-related genes' structure and expression, were performed. We observed that (i) the cellulose polymer integrity was not significantly changed under Mars-like conditions; (ii) de novo cellulose production was 1.5 times decreased in exposed KMC samples; (iii) the dry cellulose yield from the reisolated Komagataeibacter oboediens was 1.7 times lower than by wild type; (iv) there was no significant change in mechanical properties of the de novo synthesized cellulose-based pellicles produced by the exposed KMCs and K. oboediens; and (v) the gene, encoding biosynthesis of cellulose (bcsA) of the K. oboediens, was downregulated, and no topological change or mutation was observed in any of the bcs operon genes, indicating that the decreased cellulose production by the space-exposed samples was probably due to epigenetic regulation. Our results suggest that the cellulose-based pellicle could be a good material with which to protect microbial communities during space journeys, and the cellulose produced by KMC members could be suitable in the fabrication of consumer goods for extraterrestrial locations.


Subject(s)
Acetobacteraceae , Mars , Space Flight , Cellulose , Epigenesis, Genetic , Extraterrestrial Environment
7.
Int J Mol Sci ; 22(2)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33429999

ABSTRACT

Online Chemical Modeling Environment (OCHEM) was used for QSAR analysis of a set of ionic liquids (ILs) tested against multi-drug resistant (MDR) clinical isolate Acinetobacter baumannii and Staphylococcus aureus strains. The predictive accuracy of regression models has coefficient of determination q2 = 0.66 - 0.79 with cross-validation and independent test sets. The models were used to screen a virtual chemical library of ILs, which was designed with targeted activity against MDR Acinetobacter baumannii and Staphylococcus aureus strains. Seven most promising ILs were selected, synthesized, and tested. Three ILs showed high activity against both these MDR clinical isolates.


Subject(s)
Acinetobacter baumannii/drug effects , Bacterial Infections/drug therapy , Imidazoles/chemistry , Pyridines/chemistry , Acinetobacter baumannii/pathogenicity , Bacterial Infections/microbiology , Drug Resistance, Multiple , Humans , Imidazoles/chemical synthesis , Ionic Liquids/chemical synthesis , Ionic Liquids/chemistry , Pyridines/chemical synthesis , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity , Structure-Activity Relationship
8.
Membranes (Basel) ; 10(5)2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32353977

ABSTRACT

Four water insoluble room-temperature protic ionic liquids (PILs) based on the N-alkylimidazolium cation with the alkyl chain length from 1 to 4 and bis(trifluoromethylsulfonyl)imide anion were synthesized and their chemical structure was confirmed by the 1H NMR and 19F NMR analysis. PILs were revealed to be thermally stable up to 360 and 400 °C. At the same time, the proton conductivity of PILs was found to be dependent mostly on the temperature and, to a less extent, on the type of the cation, i.e., the increase of the conductivity from ~3 × 10-4 S/cm at 25 °C to 2 × 10-2 S/cm at 150 °C was observed. The water vapour sorption capacity of PILs was evaluated as a function of relative humidity and the influence of the alkyl chain length on the phase behaviour in the PIL-water system was discussed. The composite polyimide/PILs membranes were prepared by the PIL immobilization in the porous polymer (Matrimid® 5218) film. The composite membranes showed a high level of proton conductivity (~10-3 S/cm) at elevated temperatures (up to 160 °C). The obtained results reveal that the elaborated composite polyimide/PIL membranes are promising candidates for the application as proton exchange membrane at middle and high temperatures.

9.
PLoS One ; 14(2): e0209460, 2019.
Article in English | MEDLINE | ID: mdl-30802259

ABSTRACT

Several model plants are known to respond to bacterial quorum sensing molecules with altered root growth and gene expression patterns and induced resistance to plant pathogens. These compounds may represent novel elicitors that could be applied as seed primers to enhance cereal crop resistance to pathogens and abiotic stress and to improve yields. We investigated whether the acyl-homoserine lactone N-hexanoyl-L-homoserine lactone (C6-HSL) impacted winter wheat (Triticum aestivum L.) seed germination, plant development and productivity, using two Ukrainian varieties, Volodarka and Yatran 60, in both in vitro experiments and field trials. In vitro germination experiments indicated that C6-HSL seed priming had a small but significant positive impact on germination levels (1.2x increase, p < 0.0001), coleoptile and radicle development (1.4x increase, p < 0.0001). Field trials over two growing seasons (2015-16 and 2016-17) also demonstrated significant improvements in biomass at the tillering stage (1.4x increase, p < 0.0001), and crop structure and productivity at maturity including grain yield (1.4-1.5x increase, p < 0.0007) and quality (1.3x increase in good grain, p < 0.0001). In some cases variety effects were observed (p ≤ 0.05) suggesting that the effect of C6-HSL seed priming might depend on plant genetics, and some benefits of priming were also evident in F1 plants grown from seeds collected the previous season (p ≤ 0.05). These field-scale findings suggest that bacterial acyl-homoserine lactones such as C6-HSL could be used to improve cereal crop growth and yield and reduce reliance on fungicides and fertilisers to combat pathogens and stress.


Subject(s)
4-Butyrolactone/analogs & derivatives , Acyl-Butyrolactones/metabolism , Plant Development/physiology , Quorum Sensing/physiology , Seeds/growth & development , Triticum/growth & development , 4-Butyrolactone/metabolism , Bacteria/metabolism , Bacterial Proteins/metabolism , Biomass , Crop Production/methods , Germination/physiology , Seasons
10.
Int J Mol Sci ; 20(2)2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30654458

ABSTRACT

The choice of efficient antimicrobial additives for polyamide resins is very difficult because of their high processing temperatures of up to 300 °C. In this study, a new, thermally stable polymeric biocide, polyhexamethylene guanidine 2-naphtalenesulfonate (PHMG-NS), was synthesised. According to thermogravimetric analysis, PHMG-NS has a thermal degradation point of 357 °C, confirming its potential use in joint melt processing with polyamide resins. Polyamide 11 (PA-11) films containing 5, 7 and 10 wt% of PHMG-NS were prepared by compression molding and subsequently characterised by FTIR spectroscopy. The surface properties were evaluated both by contact angle, and contactless induction. The incorporation of 10 wt% of PHMG-NS into PA-11 films was found to increase the positive surface charge density by almost two orders of magnitude. PA-11/PHMG-NS composites were found to have a thermal decomposition point at about 400 °C. Mechanical testing showed no change of the tensile strength of polyamide films containing PHMG-NS up to 7 wt%. Antibiofilm activity against the opportunistic bacteria Staphylococcus aureus and Escherichia coli was demonstrated for films containing 7 or 10 wt% of PHMG-NS, through a local biocide effect possibly based on an influence on the bacterial eDNA. The biocide hardly leached from the PA-11 matrix into water, at a rate of less than 1% from its total content for 21 days.


Subject(s)
Biofilms/drug effects , Disinfectants/pharmacology , Guanidines/pharmacology , Nylons/pharmacology , Temperature , Biomass , DNA, Bacterial/metabolism , Escherichia coli K12/drug effects , Mechanical Phenomena , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , Surface Properties , Thermogravimetry
11.
Environ Sci Pollut Res Int ; 26(5): 4878-4889, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30569361

ABSTRACT

Ester-functionalized pyridinium ionic liquids (ILs), 1-decyloxycarbonylmethylpyridinium chloride (PyrСOOC10-Cl), and 1-dodecyloxycarbonylmethylpyridinium chloride (PyrСOOC12-Cl) have been synthesized and studied for their environmental toxicity. Simple long-chain pyridinium ILs, 1-dodecylpyridinium chloride (PyrC12-Cl), and commercial disinfectant cetylpyridinium chloride (CPC) were used as reference compounds. Both ester-functionalized ILs and CPC showed significantly reduced antibacterial activity compared to PyrC12-Cl. However, ester-functionalized ILs were found to have excellent antifungal activity towards Candida albicans fungus strains, similar to PyrC12-Cl and much higher than for CPC. The molecular docking of ILs in the active site of the known antifungal target N-myristoyltransferase (Nmt) C. albicans has been conducted. The obtained results indicate the possibility of ILs binding into the Nmt pocket. The high stability of the complexes, especially for PyrCOOC10-Cl, is ensured by hydrogen bonding, electrostatic anion-pi interactions, as well as hydrophobic pi-alkyl and alkyl interactions that was confirmed by calculated binding energy values. The acute toxicity studies of ester-functionalized ILs on D. rerio (zebrafish) hydrobiont have shown their dramatically reduced ecotoxicity compared to PyrC12-Cl and CPC. Thus, LD50 values of 15.2 mg/L and 16.8 mg/L were obtained for PyrCOOC10-Cl and PyrCOOC12-Cl, respectively, whereas CPC had LD50 value of 0.018 mg/L. The primary biodegradation test CEC L-33-A93 of ILs indicated an improved biodegradability of ester-functionalized compounds compared to simple long-chain ILs. Based on the obtained results, PyrCOOC10-Cl may be considered as very promising cationic biocide due to the combination of soft antimicrobial activity and reduced ecotoxicity, as well as improved biodegradability.


Subject(s)
Disinfectants/toxicity , Ionic Liquids/toxicity , Pyridinium Compounds/toxicity , Acyltransferases/metabolism , Animals , Biodegradation, Environmental , Candida albicans/drug effects , Candida albicans/enzymology , Cations , Disinfectants/chemistry , Ecotoxicology , Esters , Hydrophobic and Hydrophilic Interactions , Ionic Liquids/chemistry , Lethal Dose 50 , Molecular Docking Simulation , Pyridinium Compounds/chemistry , Zebrafish/growth & development
12.
Comput Biol Chem ; 73: 127-138, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29494924

ABSTRACT

This paper describes Quantitative Structure-Activity Relationships (QSAR) studies, molecular docking and in vitro antibacterial activity of several potent imidazolium-based ionic liquids (ILs) against S. aureus ATCC 25923 and its clinical isolate. Small set of 131 ILs was collected from the literature and uploaded in the OCHEM database. QSAR methodologies used Associative Neural Networks and Random Forests (WEKA-RF) methods. The predictive ability of the models was tested through cross-validation, giving cross-validated coefficients q2 = 0.82-0.87 for regression models and overall prediction accuracies of 80-82.1% for classification models. The proposed QSAR models are freely available online on OCHEM server at https://ochem.eu/article/107364 and can be used for estimation of antibacterial activity of new imidazolium-based ILs. A series of synthesized 1,3-dialkylimidazolium ILs with predicted activity were evaluated in vitro. The high activity of 7 ILs against S. aureus strain and its clinical isolate was measured and thereafter analyzed by the molecular docking to prokaryotic homologue of a eukaryotic tubulin FtsZ.


Subject(s)
Anti-Infective Agents, Local/pharmacology , Disinfectants/pharmacology , Imidazoles/pharmacology , Ionic Liquids/pharmacology , Machine Learning , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Infective Agents, Local/chemistry , Disinfectants/chemistry , Imidazoles/chemistry , Ionic Liquids/chemistry , Neural Networks, Computer , Quantitative Structure-Activity Relationship
13.
Mater Sci Eng C Mater Biol Appl ; 75: 969-979, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28415553

ABSTRACT

We have tested silicones containing 2% or 5% of the cationic biocides polyhexamethylene guanidine dodecylbenzenesulfonate (PHMG-DBS), 1-octyl-3-methylimidazolium tetrafluoroborate (OMIM-BF4) or 1-dodecyl-3-methylimidazolium tetrafluoroborate (DMIM-BF4) against the major relevant bacterial and yeast species in health care-associated infections (HCAI). Study conducted according to the international standard ISO 22196 revealed that silicones containing 2% or 5% DMIM-BF4 or 5% PHMG-DBS presented the highest antimicrobial activity, leading to a logarithmic growth reduction of 3.03 to 6.46 and 3.65 to 4.85 depending on the bacterial or fungal species. Heat-pretreated silicones containing 2% DMIM-BF4 kept a high activity, with at least a 3-log reduction in bacterial growth, except against P. aeruginosa where there was only a 1.1-log reduction. After 33days, the release ratio of cationic biocide from silicone films containing 5% of DMIM-BF4 was found to be 5.6% in pure water and 1.9% in physiological saline solution, respectively. No leaching of PHMG-DBS polymeric biocide was detected under the same conditions. These results demonstrate unambiguously that silicones containing 2% DMIM-BF4 or 5% PHMG-DBS present high antimicrobial activity, as well as high leaching resistance and therefore may be good candidates for the development of safer medical devices.


Subject(s)
Anti-Infective Agents/chemistry , Disinfectants/chemistry , Equipment and Supplies , Silicones/chemistry , Acinetobacter baumannii/drug effects , Anti-Infective Agents/pharmacology , Enterobacter cloacae/drug effects , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Staphylococcus epidermidis/drug effects
14.
Environ Toxicol Chem ; 36(9): 2543-2551, 2017 09.
Article in English | MEDLINE | ID: mdl-28262978

ABSTRACT

A new polymeric biocide polyhexamethylene guanidine (PHMG) molybdate has been synthesized. The obtained cationic polymer has limited water solubility of 0.015 g/100 mL and is insoluble in paint solvents. The results of acute toxicity studies indicate moderate toxicity of PHMG molybdate, which has a median lethal dose at 48 h of 0.7 mg/L for Daphnia magna and at 96 h of 17 mg/L for Danio rerio (zebrafish) freshwater model organisms. Commercial ship paint was then modified by the addition of a low concentration of polymeric biocide 5% (w/w). The painted steel panels were kept in Dnipro River water for the evaluation of the dynamics of fouling biomass. After 129-d exposure, Bryozoa dominated in biofouling of tested substrates, forming 86% (649 g/m2 ) of the total biomass on control panel surfaces. However, considerably lower Bryozoa fouling biomass (15 g/m2 ) was detected for coatings containing PHMG molybdate. Dreissenidae mollusks were found to form 88% (2182 g/m2 ) of the fouling biomass on the control substrates after 228 d of exposure, whereas coatings containing PHMG molybdate showed a much lower biomass value of 23.6 g/m2 . The leaching rate of PHMG molybdate in water was found to be similar to rates for conventional booster biocides ranging from 5.7 µg/cm2 /d at the initial stage to 2.2 µg/cm2 /d at steady state. Environ Toxicol Chem 2017;36:2543-2551. © 2017 SETAC.


Subject(s)
Biofouling , Disinfectants/chemical synthesis , Guanidines/chemical synthesis , Polyamines/chemical synthesis , Aquatic Organisms , Disinfectants/toxicity , Guanidines/toxicity , Paint , Polyamines/toxicity , Ships , Solubility , Steel
15.
Nanoscale Res Lett ; 12(1): 126, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28235361

ABSTRACT

Novel nanoporous film materials of thermostable cyanate ester resins (CERs) were generated by polycyclotrimerization of dicyanate ester of bisphenol E in the presence of varying amounts (from 20 to 40 wt%) of an ionic liquid (IL), i.e., 1-heptylpyridinium tetrafluoroborate, followed by its quantitative extraction after complete CER network formation. The completion of CER formation and IL extraction was assessed using gel fraction content determination, FTIR, 1H NMR, and energy-dispersive X-ray spectroscopy (EDX). SEM and DSC-based thermoporometry analyses demonstrated the formation of nanoporous structures after IL removal from CER networks, thus showing the effective role of IL as a porogen. Pore sizes varied from ~20 to ~180 nm with an average pore diameter of around 45-60 nm depending on the initial IL content. The thermal stability of nanoporous CER-based films was investigated by thermogravimetric analysis.

16.
Curr Drug Discov Technol ; 13(2): 109-19, 2016.
Article in English | MEDLINE | ID: mdl-27160290

ABSTRACT

Quantitative structure-activity relationships (QSAR) of imidazolium ionic liquids (ILs) as inhibitors of C. albicans collection strains (IOA-109, KCTC 1940, ATCC 10231) have been studied. Predictive QSAR models were built using different descriptor sets for a set of 88 ionic liquids with known minimum inhibitory concentrations (MIC) against C. albicans. We applied the state-of-the-art QSAR methodologies such as WEKA Random Forest (RF) as a binary classifier, Associative Neural Networks (ASNN) and k-Nearest Neighbors (k-NN) to build continuum non-linear regression models. The obtained models were validated using a 5-fold cross-validation approach and resulted in the prediction accuracies of 80% ± 5.0 for the classification models and q2 = 0.73-0.87 for the non-linear regression models. Biological testing of newly synthesized 1,3-dialkylimidazolium ionic liquids with predicted activity was performed by disco-diffusion method against C. albicans ATCC 10231 M885 strain and clinical isolates C. albicans, C. krusei and C. glabrata strains. The high percentage of coincidence between the QSAR predictions and the experimental results confirmed the high predictive power of the developed QSAR models within the applicability domain of new imidazolium ionic liquids.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Imidazoles/pharmacology , Ionic Liquids/pharmacology , Models, Molecular , Antifungal Agents/chemistry , Candida albicans/growth & development , Imidazoles/chemistry , Ionic Liquids/chemistry , Machine Learning , Neural Networks, Computer , Quantitative Structure-Activity Relationship , Regression Analysis , Reproducibility of Results
17.
Chem Biol Drug Des ; 88(3): 422-33, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27086199

ABSTRACT

Predictive QSAR models for the inhibitors of B. subtilis and Ps. aeruginosa among imidazolium-based ionic liquids were developed using literary data. The regression QSAR models were created through Artificial Neural Network and k-nearest neighbor procedures. The classification QSAR models were constructed using WEKA-RF (random forest) method. The predictive ability of the models was tested by fivefold cross-validation; giving q(2) = 0.77-0.92 for regression models and accuracy 83-88% for classification models. Twenty synthesized samples of 1,3-dialkylimidazolium ionic liquids with predictive value of activity level of antimicrobial potential were evaluated. For all asymmetric 1,3-dialkylimidazolium ionic liquids, only compounds containing at least one radical with alkyl chain length of 12 carbon atoms showed high antibacterial activity. However, the activity of symmetric 1,3-dialkylimidazolium salts was found to have opposite relationship with the length of aliphatic radical being maximum for compounds based on 1,3-dioctylimidazolium cation. The obtained experimental results suggested that the application of classification QSAR models is more accurate for the prediction of activity of new imidazolium-based ILs as potential antibacterials.


Subject(s)
Anti-Bacterial Agents/pharmacology , Imidazoles/pharmacology , Ionic Liquids , Quantitative Structure-Activity Relationship , Models, Theoretical , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...