Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Radiat Prot Dosimetry ; 199(14): 1465-1471, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37721084

ABSTRACT

Rapid sample processing and interpretation of estimated exposures will be critical for triaging exposed individuals after a major radiation incident. The dicentric chromosome (DC) assay assesses absorbed radiation using metaphase cells from blood. The Automated Dicentric Chromosome Identifier and Dose Estimator System (ADCI) identifies DCs and determines radiation doses. This study aimed to broaden accessibility and speed of this system, while protecting data and software integrity. ADCI Online is a secure web-streaming platform accessible worldwide from local servers. Cloud-based systems containing data and software are separated until they are linked for radiation exposure estimation. Dose estimates are identical to ADCI on dedicated computer hardware. Image processing and selection, calibration curve generation, and dose estimation of 9 test samples completed in < 2 days. ADCI Online has the capacity to alleviate analytic bottlenecks in intermediate-to-large radiation incidents. Multiple cloned software instances configured on different cloud environments accelerated dose estimation to within clinically relevant time frames.


Subject(s)
Cloud Computing , Radiation Exposure , Humans , Software , Biological Assay
2.
Int J Radiat Biol ; 98(5): 843-854, 2022.
Article in English | MEDLINE | ID: mdl-34606416

ABSTRACT

PURPOSE: In a nuclear or radiological event, an early diagnostic or prognostic tool is needed to distinguish unexposed from low- and highly exposed individuals with the latter requiring early and intensive medical care. Radiation-induced gene expression (GE) changes observed within hours and days after irradiation have shown potential to serve as biomarkers for either dose reconstruction (retrospective dosimetry) or the prediction of consecutively occurring acute or chronic health effects. The advantage of GE markers lies in their capability for early (1-3 days after irradiation), high-throughput, and point-of-care (POC) diagnosis required for the prediction of the acute radiation syndrome (ARS). CONCLUSIONS: As a key session of the ConRad conference in 2021, experts from different institutions were invited to provide state-of-the-art information on a range of topics including: (1) Biodosimetry: What are the current efforts to enhance the applicability of this method to perform retrospective biodosimetry? (2) Effect prediction: Can we apply radiation-induced GE changes for prediction of acute health effects as an approach, complementary to and integrating retrospective dose estimation? (3) High-throughput and point-of-care diagnostics: What are the current developments to make the GE approach applicable as a high-throughput as well as a POC diagnostic platform? (4) Low level radiation: What is the lowest dose range where GE can be used for biodosimetry purposes? (5) Methodological considerations: Different aspects of radiation-induced GE related to more detailed analysis of exons, transcripts and next-generation sequencing (NGS) were reported.


Subject(s)
Acute Radiation Syndrome , Radiometry , Acute Radiation Syndrome/genetics , Biomarkers , Gene Expression , Humans , Radiometry/methods , Retrospective Studies
3.
Int J Radiat Biol ; 98(5): 924-941, 2022.
Article in English | MEDLINE | ID: mdl-34699300

ABSTRACT

PURPOSE: Combinations of expressed genes can discriminate radiation-exposed from normal control blood samples by machine learning (ML) based signatures (with 8-20% misclassification rates). These signatures can quantify therapeutically relevant as well as accidental radiation exposures. The prodromal symptoms of acute radiation syndrome (ARS) overlap those present in influenza and dengue fever infections. Surprisingly, these human radiation signatures misclassified gene expression profiles of virally infected samples as false positive exposures. The present study investigates these and other confounders, and then mitigates their impact on signature accuracy. METHODS: This study investigated recall by previous and novel radiation signatures independently derived from multiple Gene Expression Omnibus datasets on common and rare non-neoplastic blood disorders and blood-borne infections (thromboembolism, S. aureus bacteremia, malaria, sickle cell disease, polycythemia vera, and aplastic anemia). Normalized expression levels of signature genes are used as input to ML-based classifiers to predict radiation exposure in other hematological conditions. RESULTS: Except for aplastic anemia, these blood-borne disorders modify the normal baseline expression values of genes present in radiation signatures, leading to false-positive misclassification of radiation exposures in 8-54% of individuals. Shared changes, predominantly in DNA damage response and apoptosis-related gene transcripts in radiation and confounding hematological conditions, compromise the utility of these signatures for radiation assessment. These confounding conditions (sickle cell disease, thrombosis, S. aureus bacteremia, malaria) induce neutrophil extracellular traps, initiated by chromatin decondensation, DNA damage response and fragmentation followed by programmed cell death or extrusion of DNA fragments. Riboviral infections (e.g. influenza or dengue fever) have been proposed to bind and deplete host RNA binding proteins, inducing R-loops in chromatin. R-loops that collide with incoming replication forks can result in incompletely repaired DNA damage, inducing apoptosis and releasing mature virus. To mitigate the effects of confounders, we evaluated predicted radiation-positive samples with novel gene expression signatures derived from radiation-responsive transcripts encoding secreted blood plasma proteins whose expression levels are unperturbed by these conditions. CONCLUSIONS: This approach identifies and eliminates misclassified samples with underlying hematological or infectious conditions, leaving only samples with true radiation exposures. Diagnostic accuracy is significantly improved by selecting genes that maximize both sensitivity and specificity in the appropriate tissue using combinations of the best signatures for each of these classes of signatures.


Subject(s)
Anemia, Aplastic , Anemia, Sickle Cell , Bacteremia , Dengue , Influenza, Human , Chromatin , Dengue/genetics , Gene Expression Profiling , Humans , Staphylococcus aureus
4.
Mol Cytogenet ; 14(1): 49, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34670606

ABSTRACT

BACKGROUND: During mitosis, chromatin engages in a dynamic cycle of condensation and decondensation. Condensation into distinct units to ensure high fidelity segregation is followed by rapid and reproducible decondensation to produce functional daughter cells. Factors contributing to the reproducibility of chromatin structure between cell generations are not well understood. We investigated local metaphase chromosome condensation along mitotic chromosomes within genomic intervals showing differential accessibility (DA) between homologs. DA was originally identified using short sequence-defined single copy (sc) DNA probes of < 5 kb in length by fluorescence in situ hybridization (scFISH) in peripheral lymphocytes. These structural differences between metaphase homologs are non-random, stable, and heritable epigenetic marks which have led to the proposed function of DA as a marker of chromatin memory. Here, we characterize the organization of DA intervals into chromosomal domains by identifying multiple DA loci in close proximity to each other and examine the conservation of DA between tissues. RESULTS: We evaluated multiple adjacent scFISH probes at 6 different DA loci from chromosomal regions 2p23, 3p24, 12p12, 15q22, 15q24 and 20q13 within peripheral blood T-lymphocytes. DA was organized within domains that extend beyond the defined boundaries of individual scFISH probes. Based on hybridizations of 2 to 4 scFISH probes per domain, domains ranged in length from 16.0 kb to 129.6 kb. Transcriptionally inert chromosomal DA regions in T-lymphocytes also demonstrated conservation of DA in bone marrow and fibroblast cells. CONCLUSIONS: We identified novel chromosomal regions with allelic differences in metaphase chromosome accessibility and demonstrated that these accessibility differences appear to be aggregated into contiguous domains extending beyond individual scFISH probes. These domains are encompassed by previously established topologically associated domain (TAD) boundaries. DA appears to be a conserved feature of human metaphase chromosomes across different stages of lymphocyte differentiation and germ cell origin, consistent with its proposed role in maintenance of intergenerational cellular chromosome memory.

5.
F1000Res ; 10: 1312, 2021.
Article in English | MEDLINE | ID: mdl-35646330

ABSTRACT

Introduction: This study aimed to produce community-level geo-spatial mapping of confirmed COVID-19 cases in Ontario Canada in near real-time to support decision-making. This was accomplished by area-to-area geostatistical analysis, space-time integration, and spatial interpolation of COVID-19 positive individuals. Methods: COVID-19 cases and locations were curated for geostatistical analyses from March 2020 through June 2021, corresponding to the first, second, and third waves of infections. Daily cases were aggregated according to designated forward sortation area (FSA), and postal codes (PC) in municipal regions Hamilton, Kitchener/Waterloo, London, Ottawa, Toronto, and Windsor/Essex county. Hotspots were identified with area-to-area tests including Getis-Ord Gi*, Global Moran's I spatial autocorrelation, and Local Moran's I asymmetric clustering and outlier analyses. Case counts were also interpolated across geographic regions by Empirical Bayesian Kriging, which localizes high concentrations of COVID-19 positive tests, independent of FSA or PC boundaries. The Geostatistical Disease Epidemiology Toolbox, which is freely-available software, automates the identification of these regions and produces digital maps for public health professionals to assist in pandemic management of contact tracing and distribution of other resources.  Results: This study provided indicators in real-time of likely, community-level disease transmission through innovative geospatial analyses of COVID-19 incidence data. Municipal and provincial results were validated by comparisons with known outbreaks at long-term care and other high density residences and on farms. PC-level analyses revealed hotspots at higher geospatial resolution than public reports of FSAs, and often sooner. Results of different tests and kriging were compared to determine consistency among hotspot assignments. Concurrent or consecutive hotspots in close proximity suggested potential community transmission of COVID-19 from cluster and outlier analysis of neighboring PCs and by kriging. Results were also stratified by population based-categories (sex, age, and presence/absence of comorbidities). Conclusions: Earlier recognition of hotspots could reduce public health burdens of COVID-19 and expedite contact tracing.


Subject(s)
COVID-19 , Bayes Theorem , COVID-19/epidemiology , Cluster Analysis , Humans , Incidence , Ontario/epidemiology
6.
Int J Radiat Biol ; 96(11): 1492-1503, 2020 11.
Article in English | MEDLINE | ID: mdl-32910711

ABSTRACT

PURPOSE: Inhomogeneous exposures to ionizing radiation can be detected and quantified with the dicentric chromosome assay (DCA) of metaphase cells. Complete automation of interpretation of the DCA for whole-body irradiation has significantly improved throughput without compromising accuracy, however, low levels of residual false positive dicentric chromosomes (DCs) have confounded its application for partial-body exposure determination. MATERIALS AND METHODS: We describe a method of estimating and correcting for false positive DCs in digitally processed images of metaphase cells. Nearly all DCs detected in unirradiated calibration samples are introduced by digital image processing. DC frequencies of irradiated calibration samples and those exposed to unknown radiation levels are corrected subtracting this false positive fraction from each. In partial-body exposures, the fraction of cells exposed, and radiation dose can be quantified after applying this modification of the contaminated Poisson method. RESULTS: Dose estimates of three partially irradiated samples diverged 0.2-2.5 Gy from physical doses and irradiated cell fractions deviated by 2.3%-15.8% from the known levels. Synthetic partial-body samples comprised of unirradiated and 3 Gy samples from 4 laboratories were correctly discriminated as inhomogeneous by multiple criteria. Root mean squared errors of these dose estimates ranged from 0.52 to 1.14 Gy2 and from 8.1 to 33.3%2 for the fraction of cells irradiated. CONCLUSIONS: Automated DCA can differentiate whole- from partial-body radiation exposures and provides timely quantification of estimated whole-body equivalent dose.


Subject(s)
Cytogenetic Analysis , Radiation Exposure/analysis , Radiometry/methods , Automation , Humans , Poisson Distribution
7.
JCO Clin Cancer Inform ; 4: 602-613, 2020 07.
Article in English | MEDLINE | ID: mdl-32644817

ABSTRACT

PURPOSE: The cancer research community is constantly evolving to better understand tumor biology, disease etiology, risk stratification, and pathways to novel treatments. Yet the clinical cancer genomics field has been hindered by redundant efforts to meaningfully collect and interpret disparate data types from multiple high-throughput modalities and integrate into clinical care processes. Bespoke data models, knowledgebases, and one-off customized resources for data analysis often lack adequate governance and quality control needed for these resources to be clinical grade. Many informatics efforts focused on genomic interpretation resources for neoplasms are underway to support data collection, deposition, curation, harmonization, integration, and analytics to support case review and treatment planning. METHODS: In this review, we evaluate and summarize the landscape of available tools, resources, and evidence used in the evaluation of somatic and germline tumor variants within the context of molecular tumor boards. RESULTS: Molecular tumor boards (MTBs) are collaborative efforts of multidisciplinary cancer experts equipped with genomic interpretation resources to aid in the delivery of accurate and timely clinical interpretations of complex genomic results for each patient, within an institution or hospital network. Virtual MTBs (VMTBs) provide an online forum for collaborative governance, provenance, and information sharing between experts outside a given hospital network with the potential to enhance MTB discussions. Knowledge sharing in VMTBs and communication with guideline-developing organizations can lead to progress evidenced by data harmonization across resources, crowd-sourced and expert-curated genomic assertions, and a more informed and explainable usage of artificial intelligence. CONCLUSION: Advances in cancer genomics interpretation aid in better patient and disease classification, more streamlined identification of relevant literature, and a more thorough review of available treatments and predicted patient outcomes.


Subject(s)
Artificial Intelligence , Neoplasms , Genomics , Humans , Information Dissemination , Knowledge Bases , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/therapy
8.
PLoS One ; 15(4): e0232008, 2020.
Article in English | MEDLINE | ID: mdl-32330192

ABSTRACT

BACKGROUND: Accurate radiation dose estimates are critical for determining eligibility for therapies by timely triaging of exposed individuals after large-scale radiation events. However, the universal assessment of a large population subjected to a nuclear spill incident or detonation is not feasible. Even with high-throughput dosimetry analysis, test volumes far exceed the capacities of first responders to measure radiation exposures directly, or to acquire and process samples for follow-on biodosimetry testing. AIM: To significantly reduce data acquisition and processing requirements for triaging of treatment-eligible exposures in population-scale radiation incidents. METHODS: Physical radiation plumes modelled nuclear detonation scenarios of simulated exposures at 22 US locations. Models assumed only location of the epicenter and historical, prevailing wind directions/speeds. The spatial boundaries of graduated radiation exposures were determined by targeted, multistep geostatistical analysis of small population samples. Initially, locations proximate to these sites were randomly sampled (generally 0.1% of population). Empirical Bayesian kriging established radiation dose contour levels circumscribing these sites. Densification of each plume identified critical locations for additional sampling. After repeated kriging and densification, overlapping grids between each pair of contours of successive plumes were compared based on their diagonal Bray-Curtis distances and root-mean-square deviations, which provided criteria (<10% difference) to discontinue sampling. RESULTS/CONCLUSIONS: We modeled 30 scenarios, including 22 urban/high-density and 2 rural/low-density scenarios under various weather conditions. Multiple (3-10) rounds of sampling and kriging were required for the dosimetry maps to converge, requiring between 58 and 347 samples for different scenarios. On average, 70±10% of locations where populations are expected to receive an exposure ≥2Gy were identified. Under sub-optimal sampling conditions, the number of iterations and samples were increased, and accuracy was reduced. Geostatistical mapping limits the number of required dose assessments, the time required, and radiation exposure to first responders. Geostatistical analysis will expedite triaging of acute radiation exposure in population-scale nuclear events.


Subject(s)
Radiation Exposure/analysis , Radiometry/methods , Bayes Theorem , Humans , Models, Theoretical , Occupational Exposure/analysis , Radiation Dosage , Spatial Analysis , Triage , Weather
9.
Front Genet ; 11: 109, 2020.
Article in English | MEDLINE | ID: mdl-32211018

ABSTRACT

Splice isoform structure and abundance can be affected by either noncoding or masquerading coding variants that alter the structure or abundance of transcripts. When these variants are common in the population, these nonconstitutive transcripts are sufficiently frequent so as to resemble naturally occurring, alternative mRNA splicing. Prediction of the effects of such variants has been shown to be accurate using information theory-based methods. Single nucleotide polymorphisms (SNPs) predicted to significantly alter natural and/or cryptic splice site strength were shown to affect gene expression. Splicing changes for known SNP genotypes were confirmed in HapMap lymphoblastoid cell lines with gene expression microarrays and custom designed q-RT-PCR or TaqMan assays. The majority of these SNPs (15 of 22) as well as an independent set of 24 variants were then subjected to RNAseq analysis using the ValidSpliceMut web beacon (http://validsplicemut.cytognomix.com), which is based on data from the Cancer Genome Atlas and International Cancer Genome Consortium. SNPs from different genes analyzed with gene expression microarray and q-RT-PCR exhibited significant changes in affected splice site use. Thirteen SNPs directly affected exon inclusion and 10 altered cryptic site use. Homozygous SNP genotypes resulting in stronger splice sites exhibited higher levels of processed mRNA than alleles associated with weaker sites. Four SNPs exhibited variable expression among individuals with the same genotypes, masking statistically significant expression differences between alleles. Genome-wide information theory and expression analyses (RNAseq) in tumor exomes and genomes confirmed splicing effects for 7 of the HapMap SNP and 14 SNPs identified from tumor genomes. q-RT-PCR resolved rare splice isoforms with read abundance too low for statistical significance in ValidSpliceMut. Nevertheless, the web-beacon provides evidence of unanticipated splicing outcomes, for example, intron retention due to compromised recognition of constitutive splice sites. Thus, ValidSpliceMut and q-RT-PCR represent complementary resources for identification of allele-specific, alternative splicing.

10.
F1000Res ; 9: 943, 2020.
Article in English | MEDLINE | ID: mdl-33299552

ABSTRACT

Background: Certain riboviruses can cause severe pulmonary complications leading to death in some infected patients. We propose that DNA damage induced-apoptosis accelerates viral release, triggered by depletion of host RNA binding proteins (RBPs) from nuclear RNA bound to replicating viral sequences. Methods: Information theory-based analysis of interactions between RBPs and individual sequences in the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), Influenza A (H3N2), HIV-1, and Dengue genomes identifies strong RBP binding sites in these viral genomes. Replication and expression of viral sequences is expected to increasingly sequester RBPs - SRSF1 and RNPS1. Ordinarily, RBPs bound to nascent host transcripts prevents their annealing to complementary DNA. Their depletion induces destabilizing R-loops. Chromosomal breakage occurs when an excess of unresolved R-loops collide with incoming replication forks, overwhelming the DNA repair machinery. We estimated stoichiometry of inhibition of RBPs in host nuclear RNA by counting competing binding sites in replicating viral genomes and host RNA. Results: Host RBP binding sites are frequent and conserved among different strains of RNA viral genomes. Similar binding motifs of SRSF1 and RNPS1 explain why DNA damage resulting from SRSF1 depletion is complemented by expression of RNPS1. Clustering of strong RBP binding sites coincides with the distribution of RNA-DNA hybridization sites across the genome. SARS-CoV-2 replication is estimated to require 32.5-41.8 hours to effectively compete for binding of an equal proportion of SRSF1 binding sites in host encoded nuclear RNAs. Significant changes in expression of transcripts encoding DNA repair and apoptotic proteins were found in an analysis of influenza A and Dengue-infected cells in some individuals. Conclusions: R-loop-induced apoptosis indirectly resulting from viral replication could release significant quantities of membrane-associated virions into neighboring alveoli. These could infect adjacent pneumocytes and other tissues, rapidly compromising lung function, causing multiorgan system failure and other described symptoms.


Subject(s)
Lung Diseases/virology , R-Loop Structures , RNA-Binding Proteins/metabolism , RNA , Apoptosis , COVID-19 , Dengue Virus , HIV-1 , Humans , Influenza A Virus, H3N2 Subtype , Lung , Lung Diseases/pathology , Ribonucleoproteins , SARS-CoV-2 , Serine-Arginine Splicing Factors , Virus Replication
11.
MedComm (2020) ; 1(3): 311-327, 2020 Dec.
Article in English | MEDLINE | ID: mdl-34766125

ABSTRACT

Cancer chemotherapy responses have been related to multiple pharmacogenetic biomarkers, often for the same drug. This study utilizes machine learning to derive multi-gene expression signatures that predict individual patient responses to specific tyrosine kinase inhibitors, including erlotinib, gefitinib, sorafenib, sunitinib, lapatinib and imatinib. Support vector machine (SVM) learning was used to train mathematical models that distinguished sensitivity from resistance to these drugs using a novel systems biology-based approach. This began with expression of genes previously implicated in specific drug responses, then expanded to evaluate genes whose products were related through biochemical pathways and interactions. Optimal pathway-extended SVMs predicted responses in patients at accuracies of 70% (imatinib), 71% (lapatinib), 83% (sunitinib), 83% (erlotinib), 88% (sorafenib) and 91% (gefitinib). These best performing pathway-extended models demonstrated improved balance predicting both sensitive and resistant patient categories, with many of these genes having a known role in cancer aetiology. Ensemble machine learning-based averaging of multiple pathway-extended models derived for an individual drug increased accuracy to >70% for erlotinib, gefitinib, lapatinib and sorafenib. Through incorporation of novel cancer biomarkers, machine learning-based pathway-extended signatures display strong efficacy predicting both sensitive and resistant patient responses to chemotherapy.

12.
Mol Genet Metab ; 128(1-2): 45-52, 2019.
Article in English | MEDLINE | ID: mdl-31451418

ABSTRACT

Pharmacogenomic responses to chemotherapy drugs can be modeled by supervised machine learning of expression and copy number of relevant gene combinations. Such biochemical evidence can form the basis of derived gene signatures using cell line data, which can subsequently be examined in patients that have been treated with the same drugs. These gene signatures typically contain elements of multiple biochemical pathways which together comprise multiple origins of drug resistance or sensitivity. The signatures can capture variation in these responses to the same drug among different patients.


Subject(s)
Drug Therapy , Metabolic Networks and Pathways/drug effects , Supervised Machine Learning , Transcriptome , Breast Neoplasms/drug therapy , Cell Line, Tumor , Female , Gene Dosage , Gene Expression Profiling , Humans , Urinary Bladder Neoplasms/drug therapy
13.
Radiat Prot Dosimetry ; 186(1): 42-47, 2019 Dec 31.
Article in English | MEDLINE | ID: mdl-30624749

ABSTRACT

Accuracy of the automated dicentric chromosome (DC) assay relies on metaphase image selection. This study validates a software framework to find the best image selection models that mitigate inter-sample variability. Evaluation methods to determine model quality include the Poisson goodness-of-fit of DC distributions for each sample, residuals after calibration curve fitting and leave-one-out dose estimation errors. The process iteratively searches a pool of selection model candidates by modifying statistical and filter cut-offs to rank the best candidates according to their respective evaluation scores. Evaluation scores minimize the sum of squared errors relative to the actual radiation dose of the calibration samples. For one laboratory, the minimum score for the curve fit residual method was 0.0475 Gy2, compared to 1.1975 Gy2 without image selection. Application of optimal selection models using samples of unknown exposure produced estimated doses within 0.5 Gy of physical dose. Model optimization standardizes image selection among samples and provides relief from manual DC scoring, improving accuracy and consistency of dose estimation.


Subject(s)
Biological Assay/methods , Chromosome Aberrations , Chromosomes, Human/radiation effects , Cytogenetic Analysis/methods , Laboratories/standards , Metaphase/genetics , Radiometry/standards , Automation , Humans , Metaphase/radiation effects , Microscopy/methods , Radiation Dosage
14.
Article in English | MEDLINE | ID: mdl-30652029

ABSTRACT

The selection of effective genes that accurately predict chemotherapy responses might improve cancer outcomes. We compare optimized gene signatures for cisplatin, carboplatin, and oxaliplatin responses in the same cell lines and validate each signature using data from patients with cancer. Supervised support vector machine learning is used to derive gene sets whose expression is related to the cell line GI50 values by backwards feature selection with cross-validation. Specific genes and functional pathways distinguishing sensitive from resistant cell lines are identified by contrasting signatures obtained at extreme and median GI50 thresholds. Ensembles of gene signatures at different thresholds are combined to reduce the dependence on specific GI50 values for predicting drug responses. The most accurate gene signatures for each platin are: cisplatin: BARD1, BCL2, BCL2L1, CDKN2C, FAAP24, FEN1, MAP3K1, MAPK13, MAPK3, NFKB1, NFKB2, SLC22A5, SLC31A2, TLR4, and TWIST1; carboplatin: AKT1, EIF3K, ERCC1, GNGT1, GSR, MTHFR, NEDD4L, NLRP1, NRAS, RAF1, SGK1, TIGD1, TP53, VEGFB, and VEGFC; and oxaliplatin: BRAF, FCGR2A, IGF1, MSH2, NAGK, NFE2L2, NQO1, PANK3, SLC47A1, SLCO1B1, and UGT1A1. Data from The Cancer Genome Atlas (TCGA) patients with bladder, ovarian, and colorectal cancer were used to test the cisplatin, carboplatin, and oxaliplatin signatures, resulting in 71.0%, 60.2%, and 54.5% accuracies in predicting disease recurrence and 59%, 61%, and 72% accuracies in predicting remission, respectively. One cisplatin signature predicted 100% of recurrence in non-smoking patients with bladder cancer (57% disease-free; N = 19), and 79% recurrence in smokers (62% disease-free; N = 35). This approach should be adaptable to other studies of chemotherapy responses, regardless of the drug or cancer types.

15.
Hum Mutat ; 39(12): 2025-2039, 2018 12.
Article in English | MEDLINE | ID: mdl-30204945

ABSTRACT

The widespread use of next generation sequencing for clinical testing is detecting an escalating number of variants in noncoding regions of the genome. The clinical significance of the majority of these variants is currently unknown, which presents a significant clinical challenge. We have screened over 6,000 early-onset and/or familial breast cancer (BC) cases collected by the ENIGMA consortium for sequence variants in the 5' noncoding regions of BC susceptibility genes BRCA1 and BRCA2, and identified 141 rare variants with global minor allele frequency < 0.01, 76 of which have not been reported previously. Bioinformatic analysis identified a set of 21 variants most likely to impact transcriptional regulation, and luciferase reporter assays detected altered promoter activity for four of these variants. Electrophoretic mobility shift assays demonstrated that three of these altered the binding of proteins to the respective BRCA1 or BRCA2 promoter regions, including NFYA binding to BRCA1:c.-287C>T and PAX5 binding to BRCA2:c.-296C>T. Clinical classification of variants affecting promoter activity, using existing prediction models, found no evidence to suggest that these variants confer a high risk of disease. Further studies are required to determine if such variation may be associated with a moderate or low risk of BC.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Germ-Line Mutation , Promoter Regions, Genetic , 5' Untranslated Regions , Age of Onset , BRCA1 Protein/chemistry , BRCA1 Protein/metabolism , BRCA2 Protein/chemistry , BRCA2 Protein/metabolism , CCAAT-Binding Factor/metabolism , Cell Line, Tumor , Female , Genetic Predisposition to Disease , Humans , MCF-7 Cells , PAX5 Transcription Factor/metabolism , Protein Binding
16.
F1000Res ; 7: 233, 2018.
Article in English | MEDLINE | ID: mdl-29904591

ABSTRACT

Background: Gene signatures derived from transcriptomic data using machine learning methods have shown promise for biodosimetry testing. These signatures may not be sufficiently robust for large scale testing, as their performance has not been adequately validated on external, independent datasets. The present study develops human and murine signatures with biochemically-inspired machine learning that are strictly validated using k-fold and traditional approaches. Methods: Gene Expression Omnibus (GEO) datasets of exposed human and murine lymphocytes were preprocessed via nearest neighbor imputation and expression of genes implicated in the literature to be responsive to radiation exposure (n=998) were then ranked by Minimum Redundancy Maximum Relevance (mRMR). Optimal signatures were derived by backward, complete, and forward sequential feature selection using Support Vector Machines (SVM), and validated using k-fold or traditional validation on independent datasets. Results: The best human signatures we derived exhibit k-fold validation accuracies of up to 98% ( DDB2,  PRKDC, TPP2, PTPRE, and GADD45A) when validated over 209 samples and traditional validation accuracies of up to 92% ( DDB2,  CD8A,  TALDO1,  PCNA,  EIF4G2,  LCN2,  CDKN1A,  PRKCH,  ENO1,  and PPM1D) when validated over 85 samples. Some human signatures are specific enough to differentiate between chemotherapy and radiotherapy. Certain multi-class murine signatures have sufficient granularity in dose estimation to inform eligibility for cytokine therapy (assuming these signatures could be translated to humans). We compiled a list of the most frequently appearing genes in the top 20 human and mouse signatures. More frequently appearing genes among an ensemble of signatures may indicate greater impact of these genes on the performance of individual signatures. Several genes in the signatures we derived are present in previously proposed signatures. Conclusions: Gene signatures for ionizing radiation exposure derived by machine learning have low error rates in externally validated, independent datasets, and exhibit high specificity and granularity for dose estimation.

17.
Pharmacoecon Open ; 2(3): 255-270, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29623630

ABSTRACT

PURPOSE: Several genomic tests have recently been developed to identify the primary tumour in cancer of unknown primary tumour (CUP). However, the value of identifying the primary tumour in clinical practice for CUP patients remains questionable and difficult to prove in randomized trials. OBJECTIVE: We aimed to assess the clinical and economic value of primary tumour identification in CUP using a retrospective matched cohort study. METHODS: We used the Manitoba Cancer Registry to identify all patients initially diagnosed with metastatic cancer between 2002 and 2011. We defined patients as having CUP if their primary tumour was found 6 months or more after initial diagnosis or never found during the course of disease. Otherwise, we considered patients to have metastatic cancer from a known primary tumour (CKP). We linked all patients with Manitoba Health databases to estimate their direct healthcare costs using a phase-of-care approach. We used the propensity score matching technique to match each CUP patient with a CKP patient on clinicopathologic characteristics. We compared treatment patterns, overall survival (OS) and phase-specific healthcare costs between the two patient groups and assessed association with OS using Cox regression adjustment. RESULTS: Of 5839 patients diagnosed with metastatic cancer, 395 had CUP (6.8%); 1:1 matching created a matched group of 395 CKP patients. CUP patients were less likely to receive surgery, radiation, hormonal and targeted therapy and more likely to receive cytotoxic empiric chemotherapeutic agents. Having CUP was associated with reduced OS (hazard ratio [HR] 1.31; 95% confidence interval 1.1-1.58), but this lost statistical significance with adjustment for treatment differences. CUP patients had a significant increase in the mean net cost of initial diagnostic workup before diagnosis and a significant reduction in the mean net cost of continuing cancer care. CONCLUSION: Identifying the primary tumour in CUP patients might enable the use of more effective therapies, improve OS and allow more efficient allocation of healthcare resources.

18.
F1000Res ; 7: 1908, 2018.
Article in English | MEDLINE | ID: mdl-31275557

ABSTRACT

We present a major public resource of mRNA splicing mutations validated according to multiple lines of evidence of abnormal gene expression. Likely mutations present in all tumor types reported in the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) were identified based on the comparative strengths of splice sites in tumor versus normal genomes, and then validated by respectively comparing counts of splice junction spanning and abundance of transcript reads in RNA-Seq data from matched tissues and tumors lacking these mutations. The comprehensive resource features 341,486 of these validated mutations, the majority of which (69.9%) are not present in the Single Nucleotide Polymorphism Database (dbSNP 150). There are 131,347 unique mutations which weaken or abolish natural splice sites, and 222,071 mutations which strengthen cryptic splice sites (11,932 affect both simultaneously). 28,812 novel or rare flagged variants (with <1% population frequency in dbSNP) were observed in multiple tumor tissue types. An algorithm was developed to classify variants into splicing molecular phenotypes that integrates germline heterozygosity, degree of information change and impact on expression. The classification thresholds were calibrated against the ClinVar clinical database phenotypic assignments. Variants are partitioned into allele-specific alternative splicing, likely aberrant and aberrant splicing phenotypes. Single variants or chromosome ranges can be queried using a Global Alliance for Genomics and Health (GA4GH)-compliant, web-based Beacon "Validated Splicing Mutations" either separately or in aggregate alongside other Beacons through the public Beacon Network, as well as through our website. The website provides additional information, such as a visual representation of supporting RNAseq results, gene expression in the corresponding normal tissues, and splicing molecular phenotypes.


Subject(s)
Neoplasms , Alternative Splicing , Humans , Mutation , RNA Splice Sites , RNA Splicing
19.
Cancer Res Treat ; 50(1): 183-194, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28324922

ABSTRACT

PURPOSE: The purpose of this study was to estimate the incidence of occult gastrointestinal (GI) primary tumours in patients with metastatic cancer of uncertain primary origin and evaluate their influence on treatments and overall survival (OS). MATERIALS AND METHODS: We used population heath data from Manitoba, Canada to identify all patients initially diagnosed with metastatic cancer between 2002 and 2011. We defined patients to have "occult" primary tumour if the primary was found at least 6 months after initial diagnosis. Otherwise, we considered primary tumours as "obvious." We used propensity-score methods to match each patient with occult GI tumour to four patients with obvious GI tumour on all known clinicopathologic features. We compared treatments and 2-year survival data between the two patient groups and assessed treatment effect on OS using Cox regression adjustment. RESULTS: Eighty-three patients had occult GI primary tumours, accounting for 17.6% of men and 14% of women with metastatic cancer of uncertain primary. A 1:4 matching created a matched group of 332 patients with obvious GI primary tumour. Occult cases compared to the matched group were less likely to receive surgical interventions and targeted biological therapy, and more likely to receive cytotoxic empiric chemotherapeutic agents. Having an occult GI tumour was associated with reduced OS and appeared to be a nonsignificant independent predictor of OS when adjusting for treatment differences. CONCLUSION: GI tumours are the most common occult primary tumours in men and the second most common in women. Patients with occult GI primary tumours are potentially being undertreated with available GI site-specific and targeted therapies.


Subject(s)
Gastrointestinal Neoplasms/epidemiology , Gastrointestinal Neoplasms/pathology , Cohort Studies , Female , Gastrointestinal Neoplasms/mortality , Humans , Incidence , Male , Manitoba/epidemiology , Middle Aged , Neoplasm Metastasis , Retrospective Studies , Survival Analysis
20.
F1000Res ; 7: 1933, 2018.
Article in English | MEDLINE | ID: mdl-31001412

ABSTRACT

Background: The distribution and composition of cis-regulatory modules composed of transcription factor (TF) binding site (TFBS) clusters in promoters substantially determine gene expression patterns and TF targets. TF knockdown experiments have revealed that TF binding profiles and gene expression levels are correlated. We use TFBS features within accessible promoter intervals to predict genes with similar tissue-wide expression patterns and TF targets. Methods: Genes with correlated expression patterns across 53 tissues and TF targets were respectively identified from Bray-Curtis Similarity and TF knockdown experiments. Corresponding promoter sequences were reduced to DNase I-accessible intervals; TFBSs were then identified within these intervals using information theory-based position weight matrices for each TF (iPWMs) and clustered. Features from information-dense TFBS clusters predicted these genes with machine learning classifiers, which were evaluated for accuracy, specificity and sensitivity. Mutations in TFBSs were analyzed to in silico examine their impact on cluster densities and the regulatory states of target genes. Results:  We initially chose the glucocorticoid receptor gene ( NR3C1), whose regulation has been extensively studied, to test this approach. SLC25A32 and TANK were found to exhibit the most similar expression patterns to NR3C1. A Decision Tree classifier exhibited the largest area under the Receiver Operating Characteristic (ROC) curve in detecting such genes. Target gene prediction was confirmed using siRNA knockdown of TFs, which was found to be more accurate than those predicted after CRISPR/CAS9 inactivation. In-silico mutation analyses of TFBSs also revealed that one or more information-dense TFBS clusters in promoters are required for accurate target gene prediction.  Conclusions: Machine learning based on TFBS information density, organization, and chromatin accessibility accurately identifies gene targets with comparable tissue-wide expression patterns. Multiple information-dense TFBS clusters in promoters appear to protect promoters from effects of deleterious binding site mutations in a single TFBS that would otherwise alter regulation of these genes.

SELECTION OF CITATIONS
SEARCH DETAIL
...