Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 630(8017): 677-685, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839962

ABSTRACT

All drugs of abuse induce long-lasting changes in synaptic transmission and neural circuit function that underlie substance-use disorders1,2. Another recently appreciated mechanism of neural circuit plasticity is mediated through activity-regulated changes in myelin that can tune circuit function and influence cognitive behaviour3-7. Here we explore the role of myelin plasticity in dopaminergic circuitry and reward learning. We demonstrate that dopaminergic neuronal activity-regulated myelin plasticity is a key modulator of dopaminergic circuit function and opioid reward. Oligodendroglial lineage cells respond to dopaminergic neuronal activity evoked by optogenetic stimulation of dopaminergic neurons, optogenetic inhibition of GABAergic neurons, or administration of morphine. These oligodendroglial changes are evident selectively within the ventral tegmental area but not along the axonal projections in the medial forebrain bundle nor within the target nucleus accumbens. Genetic blockade of oligodendrogenesis dampens dopamine release dynamics in nucleus accumbens and impairs behavioural conditioning to morphine. Taken together, these findings underscore a critical role for oligodendrogenesis in reward learning and identify dopaminergic neuronal activity-regulated myelin plasticity as an important circuit modification that is required for opioid reward.


Subject(s)
Dopaminergic Neurons , GABAergic Neurons , Morphine , Myelin Sheath , Neuronal Plasticity , Nucleus Accumbens , Oligodendroglia , Optogenetics , Reward , Ventral Tegmental Area , Ventral Tegmental Area/physiology , Ventral Tegmental Area/cytology , Ventral Tegmental Area/drug effects , Animals , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/physiology , Mice , Myelin Sheath/metabolism , Morphine/pharmacology , Male , Nucleus Accumbens/cytology , Nucleus Accumbens/metabolism , Nucleus Accumbens/physiology , Nucleus Accumbens/drug effects , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Oligodendroglia/metabolism , Oligodendroglia/cytology , Oligodendroglia/drug effects , GABAergic Neurons/metabolism , GABAergic Neurons/drug effects , Analgesics, Opioid/pharmacology , Dopamine/metabolism , Female , Mice, Inbred C57BL
2.
Cell Rep ; 43(2): 113801, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38363678

ABSTRACT

Axotomized spinal motoneurons (MNs) lose presynaptic inputs following peripheral nerve injury; however, the cellular mechanisms that lead to this form of synapse loss are currently unknown. Here, we delineate a critical role for neuronal kinase dual leucine zipper kinase (DLK)/MAP3K12, which becomes activated in axotomized neurons. Studies with conditional knockout mice indicate that DLK signaling activation in injured MNs triggers the induction of phagocytic microglia and synapse loss. Aspects of the DLK-regulated response include expression of C1q first from the axotomized MN and then later in surrounding microglia, which subsequently phagocytose presynaptic components of upstream synapses. Pharmacological ablation of microglia inhibits the loss of cholinergic C boutons from axotomized MNs. Together, the observations implicate a neuronal mechanism, governed by the DLK, in the induction of inflammation and the removal of synapses.


Subject(s)
Motor Neurons , Synapses , Animals , Mice , Signal Transduction , Complement Activation , Presynaptic Terminals , Mice, Knockout
3.
Hum Mol Genet ; 31(7): 1096-1104, 2022 03 31.
Article in English | MEDLINE | ID: mdl-34686877

ABSTRACT

Dystonia is a disabling disease that manifests as prolonged involuntary twisting movements. DYT-THAP1 is an inherited form of isolated dystonia caused by mutations in THAP1 encoding the transcription factor THAP1. The phe81leu (F81L) missense mutation is representative of a category of poorly understood mutations that do not occur on residues critical for DNA binding. Here, we demonstrate that the F81L mutation (THAP1F81L) impairs THAP1 transcriptional activity and disrupts CNS myelination. Strikingly, THAP1F81L exhibits normal DNA binding but causes a significantly reduced DNA binding of YY1, its transcriptional partner that also has an established role in oligodendrocyte lineage progression. Our results suggest a model of molecular pathogenesis whereby THAP1F81L normally binds DNA but is unable to efficiently organize an active transcription complex.


Subject(s)
Dystonia Musculorum Deformans , Dystonia , Dystonic Disorders , Apoptosis Regulatory Proteins/genetics , DNA-Binding Proteins/metabolism , Dystonia/genetics , Dystonic Disorders/genetics , Humans , Mutation , YY1 Transcription Factor/genetics
4.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Article in English | MEDLINE | ID: mdl-34312226

ABSTRACT

Mechanisms controlling myelination during central nervous system (CNS) maturation play a pivotal role in the development and refinement of CNS circuits. The transcription factor THAP1 is essential for timing the inception of myelination during CNS maturation through a cell-autonomous role in the oligodendrocyte lineage. Here, we demonstrate that THAP1 modulates the extracellular matrix (ECM) composition by regulating glycosaminoglycan (GAG) catabolism within oligodendrocyte progenitor cells (OPCs). Thap1-/- OPCs accumulate and secrete excess GAGs, inhibiting their maturation through an autoinhibitory mechanism. THAP1 controls GAG metabolism by binding to and regulating the GusB gene encoding ß-glucuronidase, a GAG-catabolic lysosomal enzyme. Applying GAG-degrading enzymes or overexpressing ß-glucuronidase rescues Thap1-/- OL maturation deficits in vitro and in vivo. Our studies establish lysosomal GAG catabolism within OPCs as a critical mechanism regulating oligodendrocyte development.


Subject(s)
DNA-Binding Proteins/metabolism , Extracellular Matrix/metabolism , Lysosomes/metabolism , Animals , DNA-Binding Proteins/genetics , Gene Expression Regulation , Mice , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...