Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Invertebr Pathol ; 196: 107866, 2023 02.
Article in English | MEDLINE | ID: mdl-36436573

ABSTRACT

During a survey for pathogens and commensals of blue crabs in commercial soft shell shedding facilities in Louisiana, we discovered an occurrence of microsporidiosis in two of forty examined crabs. Judging from spore shape and size, tissue tropism and external signs of muscle pathology, the causative agent of infections was identified as Ameson michaelis, a muscle-infecting species that has been repeatedly detected in populations of Callinectes sapidus in Louisiana since 1965. However, retrospective ultrastructural examination revealed that in one of Ameson-infected crabs, infection was caused by a parasite with ultrastructural characters not completely compliant with the ones of A. michaelis. The major difference was the absence of microtubule-like appendages attached to the exospore, typical of A. michaelis and other Ameson spp. SSUrDNA-inferred pairwise evolutionary distances between the novel species and other Ameson spp. ranged from 0.006 to 0.051; it was 0.039 in the case of A. michaelis. Hence, we describe here a new species in the genus Ameson, and name it after Prof. Earl Weidner, our colleague and friend, an outstanding microsporidiologist and the author of pioneer papers on the ultrastructure and physiology of A. michaelis.


Subject(s)
Brachyura , Microsporidia , Animals , Brachyura/parasitology , Retrospective Studies , Louisiana , Muscles
2.
Environ Sci Technol ; 55(6): 3645-3656, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33617249

ABSTRACT

Hydrologic and irrigation regimes mediate the timing of selenium (Se) mobilization to rivers, but the extent to which patterns in Se uptake and trophic transfer through recipient food webs reflect the temporal variation in Se delivery is unknown. We investigated Se mobilization, partitioning, and trophic transfer along approximately 60 river miles of the selenium-impaired segment of the Lower Gunnison River (Colorado, USA) during six sampling trips between June 2015 and October 2016. We found temporal patterns in Se partitioning and trophic transfer to be independent of those in dissolved Se concentrations and that the recipient food web sustained elevated Se concentrations from earlier periods of high Se mobilization. Using an ecosystem-scale Se accumulation model tailored to the Lower Gunnison River, we predicted that the endangered Razorback Sucker (Xyrauchen texanus) and Colorado Pikeminnow (Ptychocheilus lucius) achieve whole-body Se concentrations exceeding aquatic life protection criteria during periods of high runoff and irrigation activity (April-August) that coincide with susceptible phases of reproduction and early-life development. The results of this study challenge assumptions about Se trophodynamics in fast-flowing waters and introduce important considerations for the management of Se risks for biota in river ecosystems.


Subject(s)
Selenium , Water Pollutants, Chemical , Animals , Colorado , Ecosystem , Food Chain , Rivers , Selenium/analysis , Water Pollutants, Chemical/analysis
3.
Environ Toxicol Chem ; 37(11): 2820-2834, 2018 11.
Article in English | MEDLINE | ID: mdl-30035388

ABSTRACT

Little is known about how design and testing methodologies affect the macroinvertebrate communities that are held captive in mesocosms. To address this knowledge gap, we conducted a 32-d test to determine how seeded invertebrate communities changed once removed from the natural stream and introduced to the laboratory. We evaluated larvae survival and adult emergence in controls from 4 subsequent studies, as well as corresponding within-river community changes. The experimental streams maintained about 80% of the invertebrates that originally colonized the introduced substrates. Many macroinvertebrate populations experienced changes in numbers through time, suggesting that these taxa are unlikely to maintain static populations throughout studies. For example, some taxa (Tanytarsini, Simuliidae, Cinygmula sp.) increased in number, grew (Simuliidae), and possibly recruited new individuals (Baetidae) as larvae, while several also completed other life history events (pupation and emergence) during the 30- to 32-d studies. Midges and mayflies dominated emergence, further supporting the idea that conditions are conducive for many taxa to complete their life cycles while held captive in the experimental streams. However, plecopterans were sensitive to temperature changes >2 °C between river and laboratory. Thus, this experimental stream testing approach can support diverse larval macroinvertebrate communities for durations consistent with some chronic criterion development and life cycle assessments (i.e., 30 d). The changes in communities held captive in the experimental streams were mostly consistent with the parallel changes observed from in situ river samples, indicating that mesocosm results are reasonably representative of real river insect communities. Environ Toxicol Chem 2018;37:2820-2834. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Subject(s)
Ecosystem , Invertebrates/physiology , Rivers , Animals , Body Size , Ephemeroptera/anatomy & histology , Ephemeroptera/physiology , Invertebrates/anatomy & histology , Larva/anatomy & histology , Larva/physiology , Pupa/physiology , Rivers/chemistry
4.
Environ Sci Technol ; 50(21): 11974-11983, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27731978

ABSTRACT

Direct and indirect ecological effects of the widely used insecticide bifenthrin on stream ecosystems are largely unknown. To investigate such effects, a manipulative experiment was conducted in stream mesocosms that were colonized by aquatic insect communities and exposed to bifenthrin-contaminated sediment; implications for natural streams were interpreted through comparison of mesocosm results to a survey of 100 Midwestern streams, USA. In the mesocosm experiment, direct effects of bifenthrin exposure included reduced larval macroinvertebrate abundance, richness, and biomass at concentrations (EC50's ranged from 197.6 to 233.5 ng bifenthrin/g organic carbon) previously thought safe for aquatic life. Indirect effects included a trophic cascade in which periphyton abundance increased after macroinvertebrate scrapers decreased. Adult emergence dynamics and corresponding terrestrial subsidies were altered at all bifenthrin concentrations tested. Extrapolating these results to the Midwestern stream assessment suggests pervasive ecological effects, with altered emergence dynamics likely in 40% of streams and a trophic cascade in 7% of streams. This study provides new evidence that a common pyrethroid might alter aquatic and terrestrial ecosystem function at the regional scale.


Subject(s)
Ecosystem , Insecta , Pyrethrins/toxicity , Animals , Biomass , Rivers
5.
Dis Aquat Organ ; 114(1): 1-10, 2015 May 11.
Article in English | MEDLINE | ID: mdl-25958802

ABSTRACT

Louisiana has one of the largest blue crab (Callinectes sapidus) fisheries in the USA, but little is known about blue crab diseases, parasites, and symbionts in this area. In 2013-2014, large juvenile and adult blue crabs were collected at 4 diverse sites to determine the prevalence of the protozoan symbionts associated with black gill disease (Lagenophrys callinectes), buckshot crabs (Urosporidium crescens), and bitter crab disease (Hematodinium perezi). A high aggregate prevalence of L. callinectes (93.2%) was identified across all seasons at all 4 collection sites regardless of salinity. A moderately low aggregate prevalence of U. crescens (22.4%) was identified across all seasons and sites. Prevalence of U. crescens depended on site salinity, with only 10% of infections detected at sites with <6.3 ppt salinity, and no infections detected at the low salinity site. While L. callinectes and U. crescens are commensal parasites of blue crabs, infections can result in unmarketable and unappealing meat. In the Louisiana fishery, H. perezi has been blamed circumstantially for adult mortalities in the low salinity nearshore fishing grounds. Despite this, H. perezi was not detected in any of the large crabs sampled, even from the low salinity sites. The prevalence data reported here for these 3 protozoans are the first to include blue crabs sampled seasonally at multiple locations along the Louisiana coast over the period of a year.


Subject(s)
Brachyura/parasitology , Eukaryota/physiology , Symbiosis/physiology , Animals , Host-Parasite Interactions , Louisiana , Salinity , Seawater/chemistry
6.
J Invertebr Pathol ; 127: 54-62, 2015 May.
Article in English | MEDLINE | ID: mdl-25769514

ABSTRACT

Prevalence of blue crab diseases and parasites has not been consistently monitored in the Gulf of Mexico. To establish current prevalence levels and to more fully understand population dynamics, commercial landing trends, and effects of future natural and anthropogenic disasters on animal health, we measured the prevalence of white spot syndrome virus (WSSV), Loxothylacus texanus, shell disease, and Vibrio spp. in blue crabs collected from Louisiana in 2013 and the beginning of 2014. We used PCR to detect WSSV and L. texanus infections, visual gross diagnosis for L. texanus externae and shell disease, and standard microbiological culture techniques and biochemical testing for Vibrio spp. We found no crabs infected with WSSV or L. texanus. Absence of L. texanus parasitization was expected based on the sampled salinities and the sampling focus on large crabs. Shell disease was present at a level of 54.8% and was most prevalent in the winter and summer and least prevalent in the spring. Vibrio spp. were found in the hemolymph of 22.3% of the crabs and prevalence varied by site, season, and sex. Additionally, three of 39 crabs tested were infected with reo-like virus.


Subject(s)
Brachyura/parasitology , Animals , Prevalence
7.
Dis Aquat Organ ; 112(3): 207-17, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25590771

ABSTRACT

Blue crab diseases, parasites, and commensals are not well studied in the Gulf of Mexico, and their prevalence rates have only been sporadically determined. Commercial soft shell shedding facilities in Louisiana experience high mortality rates of pre-molt crabs, and some of these deaths may be attributable to diseases or parasites. During the active shedding season in 2013, we determined the prevalence of shell disease, Vibrio spp., Lagenophrys callinectes, and Hematodinium perezi at 4 commercial shedding facilities along the Louisiana coast. We also detected Ameson michaelis and reo-like virus infections. Shell disease was moderately prevalent at rates above 50% and varied by shedding facility, collection month, and crab size. Vibrio spp. bacteria were prevalent in the hemolymph of 37% of the pre-molt crabs. Lagenophrys callinectes was highly prevalent in the pre-molt crabs, but because it is a commensal species, it may not cause high mortality rates. Hematodinium perezi was absent in all pre-molt crabs.


Subject(s)
Animal Shells/pathology , Brachyura/microbiology , Brachyura/parasitology , Animal Shells/microbiology , Animal Shells/parasitology , Animal Shells/virology , Animals , Aquaculture , Brachyura/virology , Female , Louisiana , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...