Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Res ; 195: 106876, 2023 09.
Article in English | MEDLINE | ID: mdl-37536638

ABSTRACT

There is a lack of FDA-approved tocolytics for the management of preterm labor (PL). In prior drug discovery efforts, we identified mundulone and mundulone acetate (MA) as inhibitors of in vitro intracellular Ca2+-regulated myometrial contractility. In this study, we probed the tocolytic potential of these compounds using human myometrial samples and a mouse model of preterm birth. In a phenotypic assay, mundulone displayed greater efficacy, while MA showed greater potency and uterine-selectivity in the inhibition of intracellular-Ca2+ mobilization. Cell viability assays revealed that MA was significantly less cytotoxic. Organ bath and vessel myography studies showed that only mundulone exerted inhibition of myometrial contractions and that neither compounds affected vasoreactivity of ductus arteriosus. A high-throughput combination screen identified that mundulone exhibits synergism with two clinical-tocolytics (atosiban and nifedipine), and MA displayed synergistic efficacy with nifedipine. Of these combinations, mundulone+atosiban demonstrated a significant improvement in the in vitro therapeutic index compared to mundulone alone. The ex vivo and in vivo synergism of mundulone+atosiban was substantiated, yielding greater tocolytic efficacy and potency on myometrial tissue and reduced preterm birth rates in a mouse model of PL compared to each single agent. Treatment with mundulone after mifepristone administration dose-dependently delayed the timing of delivery. Importantly, mundulone+atosiban permitted long-term management of PL, allowing 71% dams to deliver viable pups at term (>day 19, 4-5 days post-mifepristone exposure) without visible maternal and fetal consequences. Collectively, these studies provide a strong foundation for the development of mundulone as a single or combination tocolytic for management of PL.


Subject(s)
Biological Products , Obstetric Labor, Premature , Premature Birth , Tocolytic Agents , Female , Infant, Newborn , Mice , Animals , Humans , Tocolytic Agents/pharmacology , Tocolytic Agents/therapeutic use , Premature Birth/drug therapy , Nifedipine/pharmacology , Nifedipine/therapeutic use , Mifepristone/therapeutic use , Biological Products/therapeutic use , Obstetric Labor, Premature/drug therapy
2.
Clin Transplant ; 37(11): e15072, 2023 11.
Article in English | MEDLINE | ID: mdl-37434417

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) poses a serious risk to patients with chronic kidney disease (CKD) and renal transplant. While COVID-19 vaccination is recommended before transplant, there are limited data comparing vaccine timing. Our aim is to evaluate serological responses to COVID-19 vaccines pre- and post-renal transplant and the durability of antibody levels. METHODS: We retrospectively evaluated the antibody response of adult renal transplant recipients who had received at least a primary series of the COVID-19 vaccine. The patients were divided into two groups based on the timing; pre- or post-transplant. Antibody titer levels were evaluated at least 4 weeks after vaccination for each group. Titer durability was assessed by calculating the median titer level of individuals. RESULTS: A total of 139 patients were identified between January 2019 and April 2022. Twenty-nine patients were excluded because of previous COVID-19 infection, and 15 patients were excluded each for insufficient vaccine doses and lack of titer data. Forty patients were included for the pre-transplant group and 40 for post-transplant. The number of pre-transplant patients who developed antibodies (39 patients, 97.5%) was significantly greater than the number of post-transplant patients (21 patients, 52.5%) with p < .01. The median post-vaccination titer levels were significantly greater in the pre-transplant group up to 5 months after vaccination (p < .05). The pre-transplant group's titers seemed sustained even after renal transplantation. CONCLUSION: Vaccinating renal transplant patients before transplant results in increased achievement of seroresponse, higher levels of antibody titers, and sustained titers following transplant. Larger and prospective studies are warranted to confirm the findings.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Kidney Transplantation , Adult , Humans , Kidney Transplantation/adverse effects , COVID-19 Vaccines , Influenza, Human/prevention & control , Retrospective Studies , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/etiology , Vaccination , Antibodies, Viral , Transplant Recipients
3.
bioRxiv ; 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37333338

ABSTRACT

Currently, there is a lack of FDA-approved tocolytics for the management of preterm labor (PL). In prior drug discovery efforts, we identified mundulone and its analog mundulone acetate (MA) as inhibitors of in vitro intracellular Ca 2+ -regulated myometrial contractility. In this study, we probed the tocolytic and therapeutic potential of these small molecules using myometrial cells and tissues obtained from patients receiving cesarean deliveries, as well as a mouse model of PL resulting in preterm birth. In a phenotypic assay, mundulone displayed greater efficacy in the inhibition of intracellular-Ca 2+ from myometrial cells; however, MA showed greater potency and uterine-selectivity, based IC 50 and E max values between myometrial cells compared to aorta vascular smooth muscle cells, a major maternal off-target site of current tocolytics. Cell viability assays revealed that MA was significantly less cytotoxic. Organ bath and vessel myography studies showed that only mundulone exerted concentration-dependent inhibition of ex vivo myometrial contractions and that neither mundulone or MA affected vasoreactivity of ductus arteriosus, a major fetal off-target of current tocolytics. A high-throughput combination screen of in vitro intracellular Ca 2+ -mobilization identified that mundulone exhibits synergism with two clinical-tocolytics (atosiban and nifedipine), and MA displayed synergistic efficacy with nifedipine. Of these synergistic combinations, mundulone + atosiban demonstrated a favorable in vitro therapeutic index (TI)=10, a substantial improvement compared to TI=0.8 for mundulone alone. The ex vivo and in vivo synergism of mundulone and atosiban was substantiated, yielding greater tocolytic efficacy and potency on isolated mouse and human myometrial tissue and reduced preterm birth rates in a mouse model of PL compared to each single agent. Treatment with mundulone 5hrs after mifepristone administration (and PL induction) dose-dependently delayed the timing of delivery. Importantly, mundulone in combination with atosiban (FR 3.7:1, 6.5mg/kg + 1.75mg/kg) permitted long-term management of PL after induction with 30 µg mifepristone, allowing 71% dams to deliver viable pups at term (> day 19, 4-5 days post-mifepristone exposure) without any visible maternal and fetal consequences. Collectively, these studies provide a strong foundation for the future development of mundulone as a stand-alone single- and/or combination-tocolytic therapy for management of PL.

4.
Reprod Sci ; 29(2): 586-595, 2022 02.
Article in English | MEDLINE | ID: mdl-33852137

ABSTRACT

A great need exists to develop tocolytic and uterotonic drugs that combat poor, labor-related maternal and fetal outcomes. A widely utilized method to assess novel compounds for their tocolytic and uterotonic efficacy is the isometric organ bath contractility assay. Unfortunately, water-insoluble compounds can be difficult to test using the physiological, buffer-based, organ bath assay. Common methods for overcoming solubility issues include solvent variation, cosolvency, surfactant or complexion use, and emulsification. However, these options for drug delivery or formulation can impact tissue function. Therefore, the goal of this study was to evaluate the ability of common solvents, surfactants, cosolvents, and emulsions to adequately solubilize compounds in the organ bath assay without affecting mouse myometrial contractility. We found that acetone, acetonitrile, and ethanol had the least effect, while dimethylacetamide, ethyl acetate, and isopropanol displayed the greatest inhibition of myometrial contractility based on area under the contractile curve analyses. The minimum concentration of surfactants, cosolvents, and human serum albumin required to solubilize nifedipine, a current tocolytic drug, resulted in extensive bubbling in the organ bath assay, precluding their use. Finally, we report that an oil-in-water base emulsion containing no drug has no statistical effect beyond the control (water), while the drug emulsion yielded the same potency and efficacy as the freely solubilized drug.


Subject(s)
Myometrium/drug effects , Tocolytic Agents/pharmacology , Uterine Contraction/drug effects , 2-Propanol/pharmacology , Acetamides/pharmacology , Acetates/pharmacology , Acetone/pharmacology , Acetonitriles/pharmacology , Animals , Emulsions/pharmacology , Ethanol/pharmacology , Female , Mice , Solvents/pharmacology
5.
Pharmacol Res ; 146: 104268, 2019 08.
Article in English | MEDLINE | ID: mdl-31078743

ABSTRACT

Novel therapeutic regulators of uterine contractility are needed to manage preterm labor, induce labor and control postpartum hemorrhage. Therefore, we previously developed a high-throughput assay for large-scale screening of small molecular compounds to regulate calcium-mobilization in primary mouse uterine myometrial cells. The goal of this study was to select the optimal myometrial cells for our high-throughput drug discovery assay, as well as determine the similarity or differences of myometrial cells to vascular smooth muscle cells (VSMCs)-the most common off-target of current myometrial therapeutics. Molecular and pharmacological assays were used to compare myometrial cells from four sources: primary cells isolated from term pregnant human and murine myometrium, immortalized pregnant human myometrial (PHM-1) cells and immortalized non-pregnant human myometrial (hTERT-HM) cells. In addition, myometrial cells were compared to vascular SMCs. We found that the transcriptome profiles of hTERT-HM and PHM1 cells were most similar (r = 0.93 and 0.90, respectively) to human primary myometrial cells. Comparative transcriptome profiling of primary human myometrial transcriptome and VSMCs revealed 498 upregulated (p ≤ 0.01, log2FC≥1) genes, of which 142 can serve as uterine-selective druggable targets. In the high-throughput Ca2+-assay, PHM1 cells had the most similar response to primary human myometrial cells in OT-induced Ca2+-release (Emax = 195% and 143%, EC50 = 30 nM and 120 nM, respectively), while all sources of myometrial cells showed excellent and similar robustness and reproducibility (Z' = 0.52 to 0.77). After testing a panel of 61 compounds, we found that the stimulatory and inhibitory responses of hTERT-HM cells were highly-correlated (r = 0.94 and 0.95, respectively) to human primary cells. Moreover, ten compounds were identified that displayed uterine-selectivity (≥5-fold Emax or EC50 compared to VSMCs). Collectively, this study found that hTERT-HM cells exhibited the most similarity to primary human myometrial cells and, therefore, is an optimal substitute for large-scale screening to identify novel therapeutic regulators of myometrial contractility. Moreover, VSMCs can serve as an important counter-screening tool to assess uterine-selectivity of targets and drugs given the similarity observed in the transcriptome and response to compounds.


Subject(s)
Drug Discovery , High-Throughput Screening Assays , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/metabolism , Myometrium/cytology , Adolescent , Adult , Animals , Cells, Cultured , Female , Humans , Mice , Middle Aged , Pregnancy , Transcriptome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...