Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 29(16): 3189-3202, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37339179

ABSTRACT

PURPOSE: Many cancers lack argininosuccinate synthetase 1 (ASS1), the rate-limiting enzyme of arginine biosynthesis. This deficiency causes arginine auxotrophy, targetable by extracellular arginine-degrading enzymes such as ADI-PEG20. Long-term tumor resistance has thus far been attributed solely to ASS1 reexpression. This study examines the role of ASS1 silencing on tumor growth and initiation and identifies a noncanonical mechanism of resistance, aiming to improve clinical responses to ADI-PEG20. EXPERIMENTAL DESIGN: Tumor initiation and growth rates were measured for a spontaneous Ass1 knockout (KO) murine sarcoma model. Tumor cell lines were generated, and resistance to arginine deprivation therapy was studied in vitro and in vivo. RESULTS: Conditional Ass1 KO affected neither tumor initiation nor growth rates in a sarcoma model, contradicting the prevalent idea that ASS1 silencing confers a proliferative advantage. Ass1 KO cells grew robustly through arginine starvation in vivo, while ADI-PEG20 remained completely lethal in vitro, evidence that pointed toward a novel mechanism of resistance mediated by the microenvironment. Coculture with Ass1-competent fibroblasts rescued growth through macropinocytosis of vesicles and/or cell fragments, followed by recycling of protein-bound arginine through autophagy/lysosomal degradation. Inhibition of either macropinocytosis or autophagy/lysosomal degradation abrogated this growth support effect in vitro and in vivo. CONCLUSIONS: Noncanonical, ASS1-independent tumor resistance to ADI-PEG20 is driven by the microenvironment. This mechanism can be targeted by either the macropinocytosis inhibitor imipramine or the autophagy inhibitor chloroquine. These safe, widely available drugs should be added to current clinical trials to overcome microenvironmental arginine support of tumors and improve patient outcomes.


Subject(s)
Sarcoma , Soft Tissue Neoplasms , Humans , Animals , Mice , Sarcoma/drug therapy , Hydrolases/pharmacology , Polyethylene Glycols/pharmacology , Polyethylene Glycols/therapeutic use , Cell Line, Tumor , Argininosuccinate Synthase/genetics , Arginine/metabolism , Soft Tissue Neoplasms/drug therapy , Tumor Microenvironment
2.
Cancer Metab ; 9(1): 4, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33478587

ABSTRACT

BACKGROUND: Many cancers silence the metabolic enzyme argininosuccinate synthetase 1 (ASS1), the rate-limiting enzyme for arginine biosynthesis within the urea cycle. Consequently, ASS1-negative cells are susceptible to depletion of extracellular arginine by PEGylated arginine deiminase (ADI-PEG20), an agent currently being developed in clinical trials. As the primary mechanism of resistance to arginine depletion is re-expression of ASS1, we sought a tool to understand the temporal emergence of the resistance phenotype at the single-cell level. METHODS: A real-time, single-cell florescence biosensor was developed to monitor arginine-dependent protein translation. The versatile, protein-based sensor provides temporal information about the metabolic adaptation of cells, as it is able to quantify and track individual cells over time. RESULTS: Every ASS1-deficient cell analyzed was found to respond to arginine deprivation by decreased expression of the sensor, indicating an absence of resistance in the naïve cell population. However, the temporal recovery and emergence of resistance varied widely amongst cells, suggesting a heterogeneous metabolic response. The sensor also enabled determination of a minimal arginine concentration required for its optimal translation. CONCLUSIONS: The translation-dependent sensor developed here is able to accurately track the development of resistance in ASS1-deficient cells treated with ADI-PEG20. Its ability to track single cells over time allowed the determination that resistance is not present in the naïve population, as well as elucidating the heterogeneity of the timing and extent of resistance. This tool represents a useful advance in the study of arginine deprivation, while its design has potential to be adapted to other amino acids.

3.
Cancer Drug Resist ; 2(3): 516-526, 2019.
Article in English | MEDLINE | ID: mdl-35582579

ABSTRACT

Many cancers lack functional expression of the enzyme argininosuccinate synthetase 1 (ASS1) that is necessary for synthesis of L-arginine. These cancers must import arginine for survival and growth, and this reliance can be targeted by arginine-degrading extracellular enzymatic drugs, most commonly PEGylated arginine deiminase. These enzymes can become targets of the immune system, reducing their effectiveness, but PEGylation improves the in vivo stability. Arginine deprivation causes cell death in some cancers, but others gain resistance by expressing ASS1 after a starvation response is induced. Other resistance mechanisms are possible and explored, but these have not been observed specifically in response to arginine deprivation. Future studies, especially focusing on the mechanisms of ASS1 upregulation and metabolic adaptations, may yield insights into preventing or taking advantage of resistance adaptations to make arginine deprivation therapy more effective.

4.
AIDS ; 33(3): 588-592, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30475264

ABSTRACT

: The oligomerization of HIV-1 integrase onto DNA is not well understood. Here we show that HIV-1 integrase binds the DNA in biphasic (high-affinity and low-affinity) modes. For HIV-1 subtype B, the high-affinity mode is ∼100-fold greater than the low-affinity mode (Kd.DNA = 37 and 3400 nmol/l, respectively). The Kd.DNA values of patient-derived integrases containing subtype-specific polymorphisms were affected two- to four-fold, suggesting that polymorphisms may have an influence on effective-concentrations of inhibitors, as these inhibitors preferably bind to integrase-DNA complex.


Subject(s)
DNA/metabolism , HIV Infections/virology , HIV Integrase/metabolism , HIV-1/physiology , Virus Integration , Humans , Kinetics , Protein Binding
5.
AIDS ; 32(4): 469-476, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29239896

ABSTRACT

OBJECTIVE: To determine the antiretroviral activity of the integrase strand transfer inhibitors (INSTIs), raltegravir (RAL), elvitegravir (EVG), dolutegravir (DTG), cabotegravir (CAB) and bictegravir (BIC), against different subtypes as well as primary and acquired drug resistance mutations (DRMs) in a patient-cohort infected with diverse subtypes. DESIGN: Biochemical and virological drug sensitivity analyses using patient-derived HIV type 1 (HIV-1) genes and cross-sectional/longitudinal clinical study. METHODS: Assays for 50% inhibition of 3'-end processing (IC50-3EP), strand transfer (IC50-ST) and drug sensitivity for five INSTIs were done using patient-derived integrase or gag-pol genes from subtypes A1, B, C, 01_AE and 02_AG. Integrase from INSTI-naive (n = 270) and experienced (n = 96) patients were sequenced. RESULTS: RAL had higher IC50-ST than the other INSTIs for all subtypes. EVG had higher IC50-ST for HIV 1 subtype C (P < 0.05) and 02_AG (P < 0.05) than HIV 1 subtype B (HIV-1B). DTG showed lower IC50-ST in HIV 1 subtype C than HIV-1B (P = 0.003). In CAB , the non-B subtypes showed lower IC50-ST (P < 0.05) than HIV-1B. In BIC, lower IC50-ST in 01_AE (P = 0.017) and 02_AG (P = 0.045) than HIV-1B. In drug sensitivity assay, inhibiting virus replication by 50% for DTG [median (IQR) 2.14 (1.3-2.56)], CAB [1.68 (1.34-2.55)] and BIC [1.07 (0.22-2.53)] were lower than RAL and EVG. One patient had a primary DRMs (0.3%, 1/270), but 17 (6.3%) had one major accessory DRM, of which 12 were E157Q. CONCLUSION: The equal or higher potency in non-B subtypes of DTG, CAB and BIC compared with RAL and EVG confirms their suitability for use in countries dominated by non-B subtypes. Any impact of the high prevalence of major accessory mutations, especially E157Q, requires long-term follow-up studies.


Subject(s)
HIV Infections/virology , HIV Integrase Inhibitors/pharmacology , HIV-1/drug effects , Heterocyclic Compounds, 4 or More Rings/pharmacology , Pyridones/pharmacology , Adult , Amides , Cross-Sectional Studies , Drug Resistance, Viral , Genotype , HIV-1/classification , HIV-1/genetics , Heterocyclic Compounds, 3-Ring , Humans , Inhibitory Concentration 50 , Longitudinal Studies , Microbial Sensitivity Tests , Piperazines , Prevalence , Sequence Analysis, DNA , Young Adult
6.
J Antimicrob Chemother ; 71(2): 367-71, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26518047

ABSTRACT

OBJECTIVES: The use of the NNRTI rilpivirine in low- and middle-income countries (LMICs) is under debate. The main objective of this study was to provide further clinical insights and biochemical evidence on the usefulness of rilpivirine in LMICs. PATIENTS AND METHODS: Rilpivirine resistance was assessed in 5340 therapy-naive and 13,750 first-generation NNRTI-failed patients from Europe and therapy-naive HIV-1 subtype C (HIV-1C)-infected individuals from India (n = 617) and Ethiopia (n = 127). Rilpivirine inhibition and binding affinity assays were performed using patient-derived HIV-1C reverse transcriptases (RTs). RESULTS: Primary rilpivirine resistance was rare, but the proportion of patients with >100,000 HIV-1 RNA copies/mL pre-ART was high in patients from India and Ethiopia, limiting the usefulness of rilpivirine as a first-line drug in LMICs. In patients failing first-line NNRTI treatments, cross-resistance patterns suggested that 73% of the patients could benefit from switching to rilpivirine-based therapy. In vitro inhibition assays showed ∼ 2-fold higher rilpivirine IC50 for HIV-1C RT than HIV-1B RT. Pre-steady-state determination of rilpivirine-binding affinities revealed 3.7-fold lower rilpivirine binding to HIV-1C than HIV-1B RT. Structural analysis indicated that naturally occurring polymorphisms close to the NNRTI-binding pocket may reduce rilpivirine binding, leading to lower susceptibility of HIV-1C to rilpivirine. CONCLUSIONS: Our clinical and biochemical findings indicate that the usefulness of rilpivirine has limitations in HIV-1C-dominated epidemics in LMICs, but the drug could still be beneficial in patients failing first-line therapy if genotypic resistance testing is performed.


Subject(s)
Anti-HIV Agents/therapeutic use , Genotype , HIV Infections/drug therapy , HIV-1/classification , HIV-1/genetics , Rilpivirine/therapeutic use , Anti-HIV Agents/pharmacology , Developing Countries , Drug Resistance, Viral , Ethiopia , Europe , HIV Infections/virology , HIV Reverse Transcriptase/metabolism , HIV-1/isolation & purification , Humans , India , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Protein Binding , Rilpivirine/pharmacology , Treatment Failure
SELECTION OF CITATIONS
SEARCH DETAIL
...