Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 150(21)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37800333

ABSTRACT

Histone-modifying proteins play important roles in the precise regulation of the transcriptional programs that coordinate development. KDM5 family proteins interact with chromatin through demethylation of H3K4me3 as well as demethylase-independent mechanisms that remain less understood. To gain fundamental insights into the transcriptional activities of KDM5 proteins, we examined the essential roles of the single Drosophila Kdm5 ortholog during development. KDM5 performs crucial functions in the larval neuroendocrine prothoracic gland, providing a model to study its role in regulating key gene expression programs. Integrating genome binding and transcriptomic data, we identify that KDM5 regulates the expression of genes required for the function and maintenance of mitochondria, and we find that loss of KDM5 causes morphological changes to mitochondria. This is key to the developmental functions of KDM5, as expression of the mitochondrial biogenesis transcription factor Ets97D, homolog of GABPα, is able to suppress the altered mitochondrial morphology as well as the lethality of Kdm5 null animals. Together, these data establish KDM5-mediated cellular functions that are important for normal development and could contribute to KDM5-linked disorders when dysregulated.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Histone Demethylases/metabolism , Chromatin , Biology
2.
Development ; 146(24)2019 12 20.
Article in English | MEDLINE | ID: mdl-31862793

ABSTRACT

In Drosophila, the larval prothoracic gland integrates nutritional status with developmental signals to regulate growth and maturation through the secretion of the steroid hormone ecdysone. While the nutritional signals and cellular pathways that regulate prothoracic gland function are relatively well studied, the transcriptional regulators that orchestrate the activity of this tissue remain less characterized. Here, we show that lysine demethylase 5 (KDM5) is essential for prothoracic gland function. Indeed, restoring kdm5 expression only in the prothoracic gland in an otherwise kdm5 null mutant animal is sufficient to rescue both the larval developmental delay and the pupal lethality caused by loss of KDM5. Our studies show that KDM5 functions by promoting the endoreplication of prothoracic gland cells, a process that increases ploidy and is rate limiting for the expression of ecdysone biosynthetic genes. Molecularly, we show that KDM5 activates the expression of the receptor tyrosine kinase torso, which then promotes polyploidization and growth through activation of the MAPK signaling pathway. Taken together, our studies provide key insights into the biological processes regulated by KDM5 and expand our understanding of the transcriptional regulators that coordinate animal development.


Subject(s)
Biological Clocks/genetics , Drosophila Proteins/physiology , Drosophila melanogaster , Embryonic Development/genetics , Endocrine Glands/embryology , Histone Demethylases/physiology , Animals , Animals, Genetically Modified , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Ecdysone/metabolism , Embryo, Nonmammalian , Endocrine Glands/metabolism , Endoreduplication/genetics , Female , Gene Expression Regulation, Developmental , Larva , MAP Kinase Signaling System/physiology , Male , Organogenesis/genetics , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...