Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 212: 118092, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35123380

ABSTRACT

Advanced nutrient removal in water resource recovery facilities (WRRFs) can reduce coastal eutrophication, but can increase economic costs and indirect environmental impacts associated with energy and materials usage for WRRF construction and operation. A strategy of interest to reduce coastal eutrophication is the cultivation of seaweeds in proximity to WRRF discharge plumes to bioextract nutrients from coastal waters. We report economic and environmental trade-offs of this proposed strategy for a 1,170 m3·d-1 (0.31 mgd) WRRF in Boothbay Harbor, Maine, targeting a Water Environment Research Federation (WERF) level 2 effluent nitrogen goal of 3 mg-N·L-1. The scenarios investigated include WRRF upgrade and year-round nutrient bioextractive aquaculture (Saccharina latissima and Gracilaria tikvahiae cultivation) with end uses of bioenergy feedstock, fertilizer, or food. Based on biomass production characteristics and tissue nitrogen contents in Boothbay Harbor, an aquaculture site of 5.4 hectares would bioextract equivalent nitrogen mass as WRRF upgrade to meet level 2 nitrogen effluent goals. Using a techno-economic analysis, the cost of a WRRF upgrade was estimated to be $0.31 m-3 wastewater treated. The cost of bioextractive seaweed aquaculture depended on beneficial use of seaweed. If dried and sold as sea vegetables (for human consumption), a net revenue of $0.72 m-3 wastewater treated could be generated. If dried and sold as commercial fertilizer, the net cost of nutrient removal would be $0.26 m-3 wastewater treated, less than the WRRF upgrade. However, if anaerobically digested to produce biogas, the net cost of treatment was estimated to be $0.499 m-3 wastewater treated. WRRF upgrade and bioextractive aquaculture significantly reduced marine eutrophication. Bioextractive aquaculture with use as biofuel feedstock had the best performance on human carcinogenic toxicity, global warming, and fossil resource scarcity, marine ecotoxicity, and freshwater ecotoxicity. Use of seaweed product as sea vegetables was favorable considering human non-carcinogenic toxicity, marine eutrophication, freshwater eutrophication, and terrestrial ecotoxicity. The study results imply that nutrient bioextraction by seaweed aquaculture may be attractive as an alternative to advanced nutrient removal technologies in small coastal WRRFs, providing potential economic and environmental benefits for nutrient management.


Subject(s)
Wastewater , Water Resources , Aquaculture , Eutrophication , Humans , Nitrogen/analysis , Nutrients
2.
Ecohealth ; 15(2): 409-425, 2018 06.
Article in English | MEDLINE | ID: mdl-29524057

ABSTRACT

The purpose of this study was to investigate genetic biomarkers of zoonotic enteric pathogens and antibiotic-resistant genes (ARGs) in the feces of white-tailed deer (Odocoileus virginianus) as related to proximity of deer to land that receives livestock manure or human waste biosolid fertilizers. Deer feces were collected in the St. Lawrence River Valley and Adirondack State Park of New York. Campylobacter spp. 16S rDNA was detected in 12 of 232 fecal samples (8 of 33 sites). Salmonellae were cultivated from 2 of 182 fecal samples (2 of 29 sites). Genetic virulence markers for Shiga-like toxin I (stx1) and enterohemolysin (hylA) were each detected in one isolate of Escherichia coli; E. coli O157 was not detected in any of 295 fecal samples. ARGs detected in deer feces included ermB (erythromycin-resistant gene; 9 of 295 fecal samples, 5 of 38 sites), vanA (vancomycin-resistant gene; 93 of 284 samples, 33 of 38 sites), tetQ (tetracycline-resistant gene; 93 of 295 samples, 25 of 38 sites), and sul(I) (sulfonamide-resistant gene; 113 of 292 samples, 28 of 38 sites). Genetic markers of pathogens and ARGs in deer feces were spatially associated with collection near concentrated animal feeding operations (CAFOs; Campylobacter spp., tetQ, and ermB) and land-applied biosolids (tetQ). These results indicate that contact with human waste biosolids or animal manure may be an important method of pathogen and ARG transmission and that deer in proximity to land-applied manure and human waste biosolids pose increased risk to nearby produce and water quality.


Subject(s)
Deer/microbiology , Drug Resistance, Microbial/genetics , Feces/microbiology , Fertilizers/microbiology , Manure/microbiology , Agriculture/methods , Animals , Animals, Wild/microbiology , Biomarkers , Campylobacter/genetics , Escherichia coli/genetics , Humans , New York , Salmonella/genetics
3.
J Environ Qual ; 45(2): 666-74, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27065414

ABSTRACT

Production of both livestock and food crops are central priorities of agriculture; however, food safety concerns arise where these practices intersect. In this study, we investigated the public health risks associated with potential bioaerosol deposition to crops grown in the vicinity of manure application sites. A field sampling campaign at dairy manure application sites supported the emission, transport, and deposition modeling of bioaerosols emitted from these lands following application activities. Results were coupled with a quantitative microbial risk assessment model to estimate the infection risk due to consumption of leafy green vegetable crops grown at various distances downwind from the application area. Inactivation of pathogens ( spp., spp., and O157:H7) on both the manure-amended field and on crops was considered to determine the maximum loading of pathogens to plants with time following application. Overall median one-time infection risks at the time of maximum loading decreased from 1:1300 at 0 m directly downwind from the field to 1:6700 at 100 m and 1:92,000 at 1000 m; peak risks (95th percentiles) were considerably greater (1:18, 1:89, and 1:1200, respectively). Median risk was below 1:10,000 at >160 m downwind. As such, it is recommended that a 160-m setback distance is provided between manure application and nearby leafy green crop production. Additional distance or delay before harvest will provide further protection of public health.


Subject(s)
Crops, Agricultural , Manure , Public Health , Agriculture , Humans , Risk Assessment , Soil Microbiology
4.
Environ Sci Technol ; 49(16): 9842-9, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26158489

ABSTRACT

In this study, we report the human health risk of gastrointestinal infection associated with inhalation exposure to airborne zoonotic pathogens emitted following application of dairy cattle manure to land. Inverse dispersion modeling with the USEPA's AERMOD dispersion model was used to determine bioaerosol emission rates based on edge-of-field bioaerosol and source material samples analyzed by real-time quantitative polymerase chain reaction (qPCR). Bioaerosol emissions and transport simulated with AERMOD, previously reported viable manure pathogen contents, relevant exposure pathways, and pathogen-specific dose-response relationships were then used to estimate potential downwind risks with a quantitative microbial risk assessment (QMRA) approach. Median 8-h infection risks decreased exponentially with distance from a median of 1:2700 at edge-of-field to 1:13 000 at 100 m and 1:200 000 at 1000 m; peak risks were considerably greater (1:33, 1:170, and 1:2500, respectively). These results indicate that bioaerosols emitted from manure application sites following manure application may present significant public health risks to downwind receptors. Manure management practices should consider improved controls for bioaerosols in order to reduce the risk of disease transmission.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Bacteria/isolation & purification , Manure/analysis , Public Health , Risk Assessment , Animals , Cattle , Dairying , Humans , Models, Theoretical , New York
5.
Environ Monit Assess ; 187(1): 4168, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25504186

ABSTRACT

Forty-two percent of Escherichia coli and 58% of Enterococcus spp. isolated from cattle feedlot runoff and associated infiltration basin and constructed wetland treatment system were resistant to at least one antibiotic of clinical importance; a high level of multidrug resistance (22% of E. coli and 37% of Enterococcus spp.) was observed. Hierarchical clustering revealed a closely associated resistance cluster among drug-resistant E. coli isolates that included cephalosporins (ceftiofur, cefoxitin, and ceftriaxone), aminoglycosides (gentamycin, kanamycin, and amikacin), and quinolone nalidixic acid; antibiotics from these classes were used at the study site, and cross-resistance may be associated with transferrable multiple-resistance elements. For Enterococcus spp., co-resistance among vancomycin, linezolid, and daptomycin was common; these antibiotics are reserved for complicated clinical infections and have not been approved for animal use. Vancomycin resistance (n = 49) only occurred when isolates were resistant to linezolid, daptomycin, and all four of the MLSB (macrolide-lincosamide-streptogramin B) antibiotics tested (tylosin, erythromycin, lincomycin, and quinipristin/dalfopristin). This suggests that developing co-resistance to MLSB antibiotics along with cyclic lipopeptides and oxazolidinones may result in resistance to vancomycin as well. Effects of the treatment system on antibiotic resistance were pronounced during periods of no rainfall and low flow (long residence time). Increased hydraulic loading (short residence time) under the influence of rain caused antibiotic-resistant bacteria to be flushed through the treatment system. This presents concern for environmental discharge of multidrug-resistant organisms relevant to public health.


Subject(s)
Drug Resistance, Bacterial/physiology , Enterococcus/growth & development , Escherichia coli/growth & development , Waste Disposal, Fluid , Wastewater/microbiology , Animal Husbandry , Animals , Bacteria/drug effects , Cattle , Enterococcus/classification , Enterococcus/isolation & purification , Environmental Monitoring , Escherichia coli/classification , Escherichia coli/isolation & purification , Microbial Sensitivity Tests
6.
Appl Environ Microbiol ; 77(14): 4839-48, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21642395

ABSTRACT

This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria (FIB), and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manure-amended agricultural soils. Known concentrations of transformed green fluorescent protein-expressing Escherichia coli O157:H7/pZs and red fluorescent protein-expressing Salmonella enterica serovar Typhimurium/pDs were added to laboratory-scale manure-amended soil microcosms with moisture contents of 60% or 80% field capacity and incubated at temperatures of -20°C, 10°C, or 25°C for 120 days. A two-stage first-order decay model was used to determine stage 1 and stage 2 first-order decay rate coefficients and transition times for each organism and qPCR genetic marker in each treatment. Genetic markers for FIB (Enterococcus spp., E. coli, and Bacteroidales) exhibited decay rate coefficients similar to that of E. coli O157:H7/pZs but not of S. enterica serovar Typhimurium/pDs and persisted at detectable levels longer than both pathogens. Concentrations of these two bacterial pathogens, their counterpart qPCR genetic markers (stx1 and ttrRSBCA, respectively), and FIB genetic markers were also correlated (r = 0.528 to 0.745). This suggests that these qPCR genetic markers may be reliable conservative surrogates for monitoring fecal pollution from manure-amended land. Host-associated qPCR genetic markers for microbial source tracking decayed rapidly to nondetectable concentrations, long before FIB, Salmonella enterica serovar Typhimurium/pDs, and E. coli O157:H7/pZs. Although good indicators of point source or recent nonpoint source fecal contamination events, these host-associated qPCR genetic markers may not be reliable indicators of nonpoint source fecal contamination events that occur weeks following manure application on land.


Subject(s)
Escherichia coli O157/genetics , Feces/microbiology , Salmonella typhimurium/genetics , Soil Microbiology , Agriculture , Colony Count, Microbial , Genetic Markers , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Luminescent Proteins/biosynthesis , Luminescent Proteins/genetics , Manure/microbiology , Metalloendopeptidases/genetics , Real-Time Polymerase Chain Reaction , Shiga Toxin 1/genetics , Soil , Soil Pollutants/analysis , Red Fluorescent Protein
7.
Chemosphere ; 69(10): 1563-73, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17617439

ABSTRACT

The microbial community structure and mineralization of polycyclic aromatic hydrocarbons (PAHs) in a coal-tar contaminated aquifer were investigated spatially using fluorescence in situ hybridization (FISH) and in laboratory-scale incubations of the aquifer sediments. DAPI-detected microbial populations in the contaminated sediments were three orders of magnitude greater than nearby uncontaminated sediments, suggesting growth on coal-tar constituents in situ. Actinobacteria, beta- and gamma-Proteobacteria, and Flavobacteria dominated the in situ aerobic (>1 mg l(-1) dissolved oxygen) microbial community, whereas sulfate-reducing bacteria comprised 37% of the microbial community in the sulfidogenic region of the aquifer. Rapid mineralization of naphthalene and phenanthrene were observed in aerobic laboratory microcosms and resulted in significant enrichment of beta- and gamma-Proteobacteria potentially explaining their elevated presence in situ. Firmicutes, Flavobacteria, alpha-Proteobacteria, and Actinobacteria were also enriched in the mineralization assays, but to a lesser degree. Nitrate- and sulfate-limited mineralization of naphthalene in laboratory microcosms occurred to a small degree in aquifer sediments from locations where groundwater chemistry indicated nitrate- and sulfate-reduction, respectively. Some iron-limited mineralization of naphthalene and phenanthrene was also observed in sediments originating near groundwater measurements of elevated ferrous iron. The results of this study suggest that FISH may be a useful tool for providing a much needed link between laboratory microcosms and groundwater measurements made in situ necessary to better demonstrate the potential for natural attenuation at complex PAH contaminated sites.


Subject(s)
Coal Tar/analysis , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Bacteria, Aerobic/growth & development , Bacteria, Aerobic/isolation & purification , Bacteria, Anaerobic/growth & development , Bacteria, Anaerobic/isolation & purification , Biodegradation, Environmental , Coal Tar/chemistry , In Situ Hybridization, Fluorescence , Oligonucleotide Probes , Polycyclic Aromatic Hydrocarbons/chemistry , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 23S/analysis , Water Pollutants, Chemical/chemistry
8.
Water Environ Res ; 79(1): 13-28, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17290968

ABSTRACT

Expedited site characterization and groundwater monitoring using direct-push technology and conventional monitoring wells were conducted at a former manufactured gas plant site. Biogeochemical data and heterotrophic plate counts support the presence of microbially mediated remediation. By superimposing solutions of a two-dimensional reactive transport analytical model, first-order degradation rate coefficients ((day-1) ) of various compounds for the dissolved-phase plume were estimated (i.e., benzene [0.0084], naphthalene [0.0058], and acenaphthene [0.0011]). The total mass transformed by aerobic respiration, nitrate reduction, and sulfate reduction around the free-phase coal-tar dense-nonaqueous-phase-liquid region and in the plume was estimated to be approximately 4.5 kg/y using a biogeochemical mass-balance approach. The total mass transformed using the degradation rate coefficients was estimated to be approximately 3.6 kg/y. Results showed that a simple two-dimensional analytical model and a biochemical mass balance with geochemical data from expedited site characterization can be useful for rapid estimation of mass-transformation rates.


Subject(s)
Coal Tar/metabolism , Environmental Monitoring/methods , Water Purification , Biodegradation, Environmental , Oxidation-Reduction , Water Microbiology , Water Pollutants, Chemical/analysis
9.
J Contam Hydrol ; 73(1-4): 3-14, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15336787

ABSTRACT

A two-dimensional analytical model is employed for estimating the first-order degradation rate constant of hydrophobic organic compounds (HOCs) in contaminated groundwater under steady-state conditions. The model may utilize all aqueous concentration data collected downgradient of a source area, but does not require that any data be collected along the plume centerline. Using a least squares fit of the model to aqueous concentrations measured in monitoring wells, degradation rate constants were estimated at a former manufactured gas plant (FMGP) site in the Midwest U.S. The estimated degradation rate constants are 0.0014, 0.0034, 0.0031, 0.0019, and 0.0053 day(-1) for acenaphthene, naphthalene, benzene, ethylbenzene, and toluene, respectively. These estimated rate constants were as low as one-half those estimated with the one-dimensional (centerline) approach of Buscheck and Alcantar [Buscheck, T.E., Alcantar, C.M., 1995. Regression techniques and analytical solutions to demonstrate intrinsic bioremediation. In: Hinchee, R.E., Wilson, J.T., Downey, D.C. (Eds.), Intrinsic Bioremediation, Battelle Press, Columbus, OH, pp. 109-116] which does not account for transverse dispersivity. Varying the transverse and longitudinal dispersivity values over one order of magnitude for toluene data obtained from the FMGP site resulted in nearly a threefold variation in the estimated degradation rate constant-highlighting the importance of reliable estimates of the dispersion coefficients for obtaining reasonable estimates of the degradation rate constants. These results have significant implications for decision making and site management where overestimation of a degradation rate may result in remediation times and bioconversion factors that exceed expectations. For a complex source area or non-steady-state plume, a superposition of analytical models that incorporate longitudinal and transverse dispersion and time may be used at sites where the centerline method would not be applicable.


Subject(s)
Models, Theoretical , Water Pollutants, Chemical/metabolism , Water Supply , Kinetics , Organic Chemicals/metabolism , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...