Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 128(21): 213605, 2022 May 27.
Article in English | MEDLINE | ID: mdl-35687447

ABSTRACT

Nonreciprocal optical systems have found many applications altering the linear transmission of light as a function of its propagation direction. Here, we consider a new class of nonreciprocity which appears in photon pair correlations and not in linear transmission. We experimentally demonstrate and theoretically verify this nonreciprocity in the second-order coherence functions of photon pairs produced by spontaneous four-wave mixing in a silicon microdisk. Reversal of the pump propagation direction can result in substantial extinction of the coherence functions without altering pump transmission.

2.
Opt Lett ; 44(17): 4295-4298, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31465386

ABSTRACT

We demonstrate the first silicon carbide (SiC) double-microdisk resonator (DMR). The device has a compact footprint with a radius of 24 µm and operates in the ITU high frequency range (3-30 MHz). We develop a multi-layer nanofabrication recipe that yields high optical quality (Q∼105) for the SiC DMR. Because of its strong optomechanical interaction, we observe the thermal-Brownian motions of mechanical modes in a SiC DMR directly at room temperature for the first time, to the best of our knowledge. The observed mechanical modes include fundamental/second-order common modes and fundamental differential (D1) modes. The D1 modes have high mechanical qualities >3800 at around 18.4 MHz tested in vacuum. We further show that optomechanical interactions, including linear and nonlinear optomechanical spring effects, can be observed in a SiC DMR at sub-milliwatt optical power. The SiC DMR has great potential for low-power optomechanical sensing applications in harsh environments.

3.
Opt Express ; 19(18): 16885-9, 2011 Aug 29.
Article in English | MEDLINE | ID: mdl-21935049

ABSTRACT

A master-oscillator power-amplifier with stimulated Brillouin scattering (SBS) beam cleanup or wavefront reversal typically incorporates a Faraday isolator to outcouple the Stokes light, limiting the power scalability. Volume Bragg gratings (VBGs) have the potential for scaling to higher powers. We report here the results of tests on a VBG designed to resolve wavelengths 0.060 nm apart, corresponding to the 16 GHz frequency shift for SBS backscattering at 1064 nm in fused silica. Such an element may also find use in between stages of fiber amplifiers, for blocking the Stokes wave.

SELECTION OF CITATIONS
SEARCH DETAIL
...