Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
EJNMMI Radiopharm Chem ; 5(1): 24, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33175263

ABSTRACT

BACKGROUND: In the US, EU and elsewhere, basic clinical research studies with positron emission tomography (PET) radiotracers that are generally recognized as safe and effective (GRASE) can often be conducted under institutional approval. For example, in the United States, such research is conducted under the oversight of a Radioactive Drug Research Committee (RDRC) as long as certain requirements are met. Firstly, the research must be for basic science and cannot be intended for immediate therapeutic or diagnostic purposes, or to determine the safety and effectiveness of the PET radiotracer. Secondly, the PET radiotracer must be generally recognized as safe and effective. Specifically, the mass dose to be administered must not cause any clinically detectable pharmacological effect in humans, and the radiation dose to be administered must be the smallest dose practical to perform the study and not exceed regulatory dose limits within a 1-year period. In our experience, the main barrier to using a PET radiotracer under RDRC approval is accessing the required information about mass and radioactive dosing. RESULTS: The University of Michigan (UM) has a long history of using PET radiotracers in clinical research studies. Herein we provide dosing information for 55 radiotracers that will enable other PET Centers to use them under the approval of their own RDRC committees. CONCLUSIONS: The data provided herein will streamline future RDRC approval, and facilitate further basic science investigation of 55 PET radiotracers that target functionally relevant biomarkers in high impact disease states.

2.
EJNMMI Radiopharm Chem ; 3: 12, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30363401

ABSTRACT

BACKGROUND: We recently upgraded our [18F]fludeoxyglucose (FDG) production capabilities with the goal of futureproofing our FDG clinical supply, expanding the number of batches of FDG we can manufacture each day, and improving patient throughput in our nuclear medicine clinic. In this paper we report upgrade of the synthesis modules to the GE FASTLab 2 platform (Phase 1) and cyclotron updates (Phase 2) from both practical and regulatory perspectives. We summarize our experience manufacturing FDG on the FASTLab 2 module with a high-yielding self-shielded niobium (Nb) fluorine-18 target. RESULTS: Following installation of Nb targets for production of fluorine-18, a 55 µA beam for 22 min generated 1330 ± 153 mCi of [18F]fluoride. Using these cyclotron beam parameters in combination with the FASTLab 2, activity yields (AY) of FDG were 957 ± 102 mCi at EOS, corresponding to 72% non-corrected AY (n = 235). Our workflow, inventory management and regulatory compliance have been greatly simplified following the synthesis module and cyclotron upgrades, and patient wait times for FDG PET have been cut in half at our nuclear medicine clinic. CONCLUSIONS: The combination of FASTlab 2 and self-shielded Nb fluorine-18 targets have improved our yield of FDG, and enabled reliable and repeatable manufacture of the radiotracer for clinical use.

3.
Int J Radiat Oncol Biol Phys ; 97(2): 296-302, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27986344

ABSTRACT

PURPOSE: To quantify lung perfusion changes after breast/chest wall radiation therapy (RT) using pre- and post-RT single photon emission computed tomography/computed tomography (SPECT/CT) attenuation-corrected perfusion scans; and correlate decreased perfusion with adjuvant RT dose for breast cancer in a prospective clinical trial. METHODS AND MATERIALS: As part of an institutional review board-approved trial studying the impact of RT technique on lung function in node-positive breast cancer, patients received breast/chest wall and regional nodal irradiation including superior internal mammary node RT to 50 to 52.2 Gy with a boost to the tumor bed/mastectomy scar. All patients underwent quantitative SPECT/CT lung perfusion scanning before RT and 1 year after RT. The SPECT/CT scans were co-registered, and the ratio of decreased perfusion after RT relative to the pre-RT perfusion scan was calculated to allow for direct comparison of SPECT/CT perfusion changes with delivered RT dose. The average ratio of decreased perfusion was calculated in 10-Gy dose increments from 0 to 60 Gy. RESULTS: Fifty patients had complete lung SPECT/CT perfusion data available. No patient developed symptoms consistent with pulmonary toxicity. Nearly all patients demonstrated decreased perfusion in the left lung according to voxel-based analyses. The average ratio of lung perfusion deficits increased for each 10-Gy increment in radiation dose to the lung, with the largest changes in regions of lung that received 50 to 60 Gy (ratio 0.72 [95% confidence interval 0.64-0.79], P<.001) compared with the 0- to 10-Gy region. For each increase in 10 Gy to the left lung, the lung perfusion ratio decreased by 0.06 (P<.001). CONCLUSIONS: In the assessment of 50 patients with node-positive breast cancer treated with RT in a prospective clinical trial, decreased lung perfusion by SPECT/CT was demonstrated. Our study allowed for quantification of lung perfusion defects in a prospective cohort of breast cancer patients for whom attenuation-corrected SPECT/CT scans could be registered directly to RT treatment fields for precise dose estimates.


Subject(s)
Lung/physiopathology , Lung/radiation effects , Radiotherapy, Conformal , Radiotherapy, Intensity-Modulated , Unilateral Breast Neoplasms/radiotherapy , Adult , Aged , Antineoplastic Agents/therapeutic use , Confidence Intervals , Female , Humans , Lung/diagnostic imaging , Lung/pathology , Lymph Nodes/pathology , Mastectomy/statistics & numerical data , Mastectomy, Segmental/statistics & numerical data , Middle Aged , Postoperative Period , Prospective Studies , Radiation Dosage , Radiotherapy Planning, Computer-Assisted/methods , Tomography, Emission-Computed, Single-Photon , Unilateral Breast Neoplasms/diagnostic imaging
4.
EJNMMI Res ; 4(1): 20, 2014 Dec.
Article in English | MEDLINE | ID: mdl-26055934

ABSTRACT

BACKGROUND: The utility of (18) F-FDG and (11)C-PBR28 to identify aortic wall inflammation associated with abdominal aortic aneurysm (AAA) development was assessed. METHODS: Utilizing the porcine pancreatic elastase (PPE) perfusion model, abdominal aortas of male Sprague-Dawley rats were infused with active PPE (APPE, AAA; N = 24) or heat-inactivated PPE (IPPE, controls; N = 16). Aortic diameter increases were monitored by ultrasound (US). Three, 7, and 14 days after induction, APPE and IPPE rats were imaged using (18) F-FDG microPET (approximately 37 MBq IV) and compared with (18) F-FDG autoradiography (approximately 185 MBq IV) performed at day 14. A subset of APPE (N = 5) and IPPE (N = 6) animals were imaged with both (11)C-PBR28 (approximately 19 MBq IV) and subsequent (18) F-FDG (approximately 37 MBq IV) microPET on the same day 14 days post PPE exposure. In addition, autoradiography of the retroperitoneal torso was performed after (11)C-PBR28 (approximately 1,480 MBq IV) or (18) F-FDG (approximately 185 MBq IV) administration at 14 days post PPE exposure. Aortic wall-to-muscle ratios (AMRs) were determined for microPET and autoradiography. CD68 and translocator protein (TSPO) immunohistochemistry (IHC), as well as TSPO gene expression assays, were performed for validation. RESULTS: Mean 3 (p = 0.009), 7 (p < 0.0001) and 14 (p < 0.0001) days aortic diameter increases were significantly greater for APPE AAAs compared to IPPE controls. No significant differences in (18) F-FDG AMR were determined at days 3 and 7 post PPE exposure; however, at day 14, the mean (18) F-FDG AMR was significantly elevated in APPE AAAs compared to IPPE controls on both microPET (p = 0.0002) and autoradiography (p = 0.02). Similarly, mean (11)C-PBR28 AMR was significantly increased at day 14 in APPE AAAs compared to IPPE controls on both microPET (p = 0.04) and autoradiography (p = 0.02). For APPE AAAs, inhomogeneously increased (18) F-FDG and (11)C-PBR28 uptake was noted preferentially at the anterolateral aspect of the AAA. Compared to controls, APPE AAAs demonstrated significantly increased macrophage cell counts by CD68 IHC (p = 0.001) as well as increased TSPO staining (p = 0.004). Mean TSPO gene expression for APPE AAAs was also significantly elevated compared to IPPE controls (p = 0.0002). CONCLUSION: Rat AAA wall inflammation can be visualized using (18) F-FDG and (11)C-PBR28 microPET revealing regional differences of radiotracer uptake on microPET and autoradiography. These results support further investigation of (18) F-FDG and (11)C-PBR28 in the noninvasive assessment of human AAA development.

SELECTION OF CITATIONS
SEARCH DETAIL
...