Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters










Publication year range
1.
Front Pharmacol ; 14: 1253901, 2023.
Article in English | MEDLINE | ID: mdl-38152690

ABSTRACT

Progesterone has been shown to have neuroprotective capabilities against a wide range of nervous system injuries, however there are negative clinical studies that have failed to demonstrate positive effects of progesterone therapy. Specifically, we looked into whether progesterone receptors or its metabolizing enzymes, cytochrome P450c17 and 5α-reductase, are involved in the effects of progesterone on neuropathic pain after chronic constriction injury (CCI) of the sciatic nerve in mice. Intrathecal progesterone administration during the induction phase of chronic pain enhanced mechanical allodynia development and spinal glial fibrillary acidic protein (GFAP) expression, and this enhancement was inhibited by administration of ketoconazole, a P450c17 inhibitor, but not finasteride, a 5α-reductase inhibitor. Furthermore, phospho-serine levels of P450c17 in the spinal cord were elevated on day 1 after CCI operation, but not on day 17. In contrast, intrathecal progesterone administration during the maintenance phase of chronic pain decreased the acquired pain and elevated GFAP expression; this inhibition was restored by finasteride administration, but not by ketoconazole. The modification of mechanical allodynia brought on by progesterone in CCI mice was unaffected by the administration of mifepristone, a progesterone receptor antagonist. Collectively, these findings imply that progesterone suppresses spinal astrocyte activation via 5α-reductase activity during the maintenance phase of chronic pain and has an analgesic impact on the mechanical allodynia associated with the growing neuropathy. Progesterone, however, stimulates spinal astrocytes during the induction stage of peripheral neuropathy and boosts the allodynic impact caused by CCI through early spinal P450c17 activation.

2.
Sci Rep ; 13(1): 20245, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37985842

ABSTRACT

It has been suggested that stress responses induced by fasting have analgesic effects on nociception by elevating the levels of stress-related hormones, while there is limited understanding of pain control mechanisms. Here, we investigated whether acute or intermittent fasting alleviates formalin-induced pain in mice and whether spinal orexin A (OXA) plays a role in this process. 6, 12, or 24 h acute fasting (AF) and 12 or 24 h intermittent fasting (IF) decreased the second phase of pain after intraplantar formalin administration. There was no difference in walking time in the rota-rod test and distance traveld in the open field test in all groups. Plasma corticosterone level and immobility time in the forced swim test were increased after 12 h AF, but not after 12 h IF. 12 h AF and IF increased not only the activation of OXA neurons in the lateral hypothalamus but also the expression of OXA in the lateral hypothalamus and spinal cord. Blockade of spinal orexin 1 receptor with SB334867 restored formalin-induced pain and spinal c-Fos immunoreactivity that were decreased after 12 h IF. These results suggest that 12 h IF produces antinociceptive effects on formalin-induced pain not by corticosterone elevation but by OXA-mediated pathway.


Subject(s)
Acute Pain , Mice , Animals , Orexins/pharmacology , Formaldehyde/toxicity , Intermittent Fasting , Corticosterone/pharmacology , Analgesics/pharmacology , Spinal Cord/metabolism , Orexin Receptors/metabolism
3.
Integr Med Res ; 12(4): 100999, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37953754

ABSTRACT

Background: Peripheral hypersensitivities develop in the face and hindpaws of mice with nitroglycerin (NTG)-induced migraine. We evaluated whether diluted bee venom (DBV) injections at acupoints prevented these peripheral hypersensitivities and c-Fos expression in the trigeminal nucleus caudalis (TNC). Methods: NTG (10 mg/kg, intraperitoneal, i.p.) was administered every other day for nine days. DBV (0.1 mg/kg) was subcutaneously injected into the ST36 (Zusanli), LI4 (Hegu), or GV16 (Fengfu) acupoints 75 min after each NTG injection. Mice were pretreated with naloxone (5 mg/kg, i.p.) or yohimbine (5 mg/kg, i.p.) 30 min before the DBV injections. Results: NTG injection caused facial cold allodynia, hindpaw mechanical allodynia, and increased c-Fos-immunoreactive (ir) cells in the TNC. Repetitive DBV injections at GV16, but not the ST36, or LI4 acupoints, suppressed NTG-induced hindpaw mechanical allodynia and facial cold allodynia. The number of c-Fos-ir cells also decreased in response to DBV injections at the GV16 acupoint. Remarkably, pretreatment with yohimbine reversed the anti-allodynic effects of DBV injections and attenuated the decreased c-Fos expression in response to GV16 DBV treatment. Naloxone did not block the effects of GV16 DBV stimulation. Conclusion: These findings demonstrate that repetitive DBV treatment at the GV16 acupoint relieves NTG-induced facial and hindpaw hypersensitivities and decreases in c-Fos expression in the TNC via activation of the alpha-2 adrenoceptors, but not the opioid receptors.

4.
Jpn Dent Sci Rev ; 59: 253-262, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37674900

ABSTRACT

Metagenomics and metatranscriptomics have enhanced our understanding of the oral microbiome and its impact on oral health. However, these approaches have inherent limitations in exploring individual cells and the heterogeneity within mixed microbial communities, which restricts our current understanding to bulk cells and species-level information. Fortunately, recent technical advances have enabled the application of single-cell RNA sequencing (scRNA-seq) for studying bacteria, shedding light on cell-to-cell diversity and interactions between host-bacterial cells at the single-cell level. Here, we address the technical barriers in capturing RNA from single bacterial cells and highlight pioneering studies from the past decade. We also discuss recent achievements in host-bacterial dual transcriptional profiling at the single-cell level. Bacterial scRNA-seq provides advantages in various research fields, including the investigation of phenotypic heterogeneity within genetically identical bacteria, identification of rare cell types, detection of antibiotic-resistant or persistent cells, analysis of individual gene expression patterns and metabolic activities, and characterization of specific microbe-host interactions. Integrating single-cell techniques with bulk approaches is essential to gain a comprehensive understanding of oral diseases and develop targeted and personalized treatment in dentistry. The reviewed pioneering studies are expected to inspire future research on the oral microbiome at the single-cell level.

5.
Front Mol Neurosci ; 16: 1172366, 2023.
Article in English | MEDLINE | ID: mdl-37122619

ABSTRACT

Neuropathic pain caused by trigeminal nerve injury is a typical refractory orofacial chronic pain accompanied by the development of hyperalgesia and allodynia. We previously demonstrated that the mammalian target of rapamycin (mTOR) inhibitor rapamycin suppressed orofacial formalin injection-induced nociception; however, the underlying mechanism is unclear, and it is unknown whether it can reduce trigeminal neuropathic pain. In mice, left infraorbital nerve and partial nerve ligation (ION-pNL) was performed using a silk suture (8-0). Fourteen days after surgery, neuropathic pain behavior was examined on a whisker pad and rapamycin (0.1, 0.3, and 1.0 mg/kg) was administered intraperitoneally. Mechanical and cold sensitivities in the orofacial region were quantified using von Frey filaments and acetone solution, respectively. Changes in mTOR and related proteins, such as p-MKK3/6, p-MKK4, p-JNK, p-ERK, p-p38 MAPK, GFAP, and Iba-1, in the trigeminal nucleus caudalis (TNC) or the trigeminal ganglia (TG) tissues were examined via western blot analysis or immunohistochemistry. Mice demonstrated significant mechanical and cold allodynia 2 weeks following ION-pNL injury, both of which were significantly reduced 1 h after the administration of high-dose rapamycin (1.0 mg/kg). In the TG tissue, ION-pNL surgery or rapamycin treatment did not change p-mTOR and p-4EBP1, but rapamycin reduced the increase of p-S6 and S6 induced by ION-pNL. In the TNC tissue, neither ION-pNL surgery nor rapamycin treatment altered p-mTOR, p-S6, and p-4EBP1 expressions, whereas rapamycin significantly decreased the ION-pNL-induced increase in Iba-1 expression. In addition, rapamycin suppressed the increase in p-p38 MAPK and p-MKK4 expressions but not p-MKK3/6 expression. Moreover, p-p38 MAPK-positive cells were colocalized with increased Iba-1 in the TNC. Our findings indicate that rapamycin treatment reduces both mechanical and cold orofacial allodynia in mice with trigeminal neuropathic pain, which is closely associated with the modulation of p-MKK4/p-p38 MAPK-mediated microglial activation in the TNC.

6.
Life (Basel) ; 12(9)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36143331

ABSTRACT

The pathophysiological mechanism underlying migraine-associated peripheral hypersensitivity remains unclear. Acid-sensing ion channels (ASICs) and transient receptor potential ankyrin 1 (TRPA1) are known to be causative pathogenic factors of mechanical and cold allodynia, respectively. Here, we sought to investigate their involvement in cold and mechanical allodynia of the face and hindpaws, respectively, in a mouse model of repetitive nitroglycerin (NTG)-induced migraine. NTG (10 mg/kg) was administered to the mice every other day for 9 days, followed 90 min later by HC-030031 (a TRPA1 blocker) or amiloride (a non-selective ASIC blocker). Mechanical or cold sensitivity of the hindpaw and facial regions was quantified using von-Frey filaments or acetone solution, respectively. Immunohistochemistry revealed that c-Fos expression was significantly increased in the trigeminal nucleus caudalis region but not in the spinal cord. Amiloride treatment only reduced NTG-induced hindpaw mechanical allodynia, whereas HC-030031 treatment only improved facial cold allodynia. Interestingly, the number of c-Fos positive cells decreased to a similar level in each drug treatment group. These findings demonstrate that facial cold allodynia and hindpaw mechanical allodynia are differentially mediated by activation of TRPA1 and ASIC, respectively, in mice with repetitive NTG-induced hypersensitivity.

7.
Life (Basel) ; 12(2)2022 Jan 30.
Article in English | MEDLINE | ID: mdl-35207502

ABSTRACT

Administration of dexmedetomidine significantly induces sedation and anti-nociception in several nociceptive models, but clinical trials are restricted due to adverse side effects, including lethargy, hypotension, and bradycardia. Herein, we investigated whether intraperitoneal inoculation of dexmedetomidine reduced the orofacial nociceptive response and affected motor coordination and blood pressure and examined whether a lower dose of dexmedetomidine in combination with 0.5% lidocaine produced an antinociceptive effect without any adverse side events in a murine model. To perform the experiment, 5% formalin (10 µL) was subcutaneously inoculated into the right upper lip, and the rubbing responses were counted for 45 min. Different doses of dexmedetomidine combined with 0.5% lidocaine were administered 10 and 30 min before formalin injection, respectively. Dexmedetomidine (10 µg/kg) significantly reduced orofacial nociceptive responses during the second phase of the formalin test and decreased the expression of Fos in trigeminal nucleus caudalis (TNC). Besides, a high dose of dexmedetomidine (30 µg/kg) induced lessening physical ability and significantly reduced systolic pressure and heart rate. When 0.5% lidocaine was injected subcutaneously, nociceptive responses were reduced only in the first phase. Interestingly, although a low dose of dexmedetomidine (3 µg/kg) alone did not show an antinociceptive effect, its co-administration with lidocaine significantly reduced the nociceptive response in both phases and decreased TNC Fos expression without motor dysfunction and hypotension. This finding suggests that the combination of a low-dose of systemic dexmedetomidine with lidocaine may be a safe medicinal approach for acute inflammatory pain management in the orofacial region, particularly mucogingival pain.

8.
Korean J Physiol Pharmacol ; 25(4): 365-374, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34187953

ABSTRACT

The mammalian target of rapamycin (mTOR) plays a role in various cellular phenomena, including autophagy, cell proliferation, and differentiation. Although recent studies have reported its involvement in nociceptive responses in several pain models, whether mTOR is involved in orofacial pain processing is currently unexplored. This study determined whether rapamycin, an mTOR inhibitor, reduces nociceptive responses and the number of Fos-immunoreactive (Fos-ir) cells in the trigeminal nucleus caudalis (TNC) in a mouse orofacial formalin model. We also examined whether the glial cell expression and phosphorylated p38 (p-p38) mitogen-activated protein kinases (MAPKs) in the TNC are affected by rapamycin. Mice were intraperitoneally given rapamycin (0.1, 0.3, or 1.0 mg/kg); then, 30 min after, 5% formalin (10 µl) was subcutaneously injected into the right upper lip. The rubbing responses with the ipsilateral forepaw or hindpaw were counted for 45 min. High-dose rapamycin (1.0 mg/kg) produced significant antinociceptive effects in both the first and second phases of formalin test. The number of Fos-ir cells in the ipsilateral TNC was also reduced by high-dose rapamycin compared with vehicle-treated animals. Furthermore, the number of p-p38-ir cells the in ipsilateral TNC was significantly decreased in animals treated with high-dose rapamycin; p-p38 expression was co-localized in microglia, but not neurons and astrocytes. Therefore, the mTOR inhibitor, rapamycin, reduces orofacial nociception and Fos expression in the TNC, and its antinociceptive action on orofacial pain may be associated with the inhibition of p-p38 MAPK in the microglia.

9.
Neuroscience ; 455: 177-194, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33359660

ABSTRACT

The analgesic effect of alpha-2 adrenergic receptor (α2AR) agonists, which relieve chronic neuropathic pain, is highly variable among individuals. Here, we used a mouse model of spared nerve injury (SNI) to show that treatment time after the establishment of neuropathic pain was important for the variability in the analgesic efficacy of α2AR agonists, which was related to the activity of regulator of G-protein signaling protein 4 (RGS4). Intrathecal treatment with α2AR agonists, clonidine (0.1-1 nmol) or dexmedetomidine (0.3-1 nmol), relieved mechanical allodynia and thermal hyperalgesia on postoperative day (POD) 14, but their efficacy was weaker on POD28 and absent on POD56. The RGS4 level of plasma membrane was increased on POD56 compared to that on POD14. Moreover, in RGS4-deficient or RGS4 inhibitor (CCG50014)-treated mice, the analgesic effect of the α2AR agonists was conserved even on POD56. The increased plasma membrane RGS4 expression and the reduced level of active Gαi after clonidine injection on POD56 were completely restored by CCG50014. Higher doses of clonidine (10 nmol) and dexmedetomidine (3 nmol) relieved neuropathic pain on POD56 but were accompanied with serious side effects. Whereas, the coadministration of CCG50014 with clonidine (1 nmol) or dexmedetomidine (1 nmol) did not cause side effects. These findings demonstrated that SNI-induced increase in plasma membrane RGS4 expression was associated with low efficacy of α2AR agonists in a model of persistent, chronic neuropathic pain. Furthermore, α2AR agonist administration together with RGS4-targeted intervention represents a novel strategy for the treatment of neuropathic pain to overcome dose-limiting side effects.


Subject(s)
Adrenergic alpha-2 Receptor Agonists , Analgesics , Hyperalgesia , Neuralgia , Receptors, Adrenergic, alpha-2 , Adrenergic Agonists , Adrenergic alpha-2 Receptor Agonists/pharmacology , Adrenergic alpha-Agonists , Analgesics/pharmacology , Animals , Clonidine/pharmacology , Hyperalgesia/drug therapy , Mice , Neuralgia/drug therapy
10.
Mol Pain ; 15: 1744806919843046, 2019.
Article in English | MEDLINE | ID: mdl-30900515

ABSTRACT

Spinal D-serine plays an important role in nociception via an increase in phosphorylation of the N-Methyl-D-aspartate (NMDA) receptor GluN1 subunit (pGluN1). However, the cellular mechanisms underlying this process have not been elucidated. Here, we investigate the possible role of neuronal nitric oxide synthase (nNOS) in the D-serine-induced potentiation of NMDA receptor function and the induction of neuropathic pain in a chronic constriction injury (CCI) model. Intrathecal administration of the serine racemase inhibitor, L-serine O-sulfate potassium salt (LSOS) or the D-serine degrading enzyme, D-amino acid oxidase (DAAO) on post-operative days 0-3 significantly reduced the CCI-induced increase in nitric oxide (NO) levels and nicotinamide adenine dinucleotide phosphate-diaphorase staining in lumbar dorsal horn neurons, as well as the CCI-induced decrease in phosphorylation (Ser847) of nNOS (pnNOS) on day 3 post-CCI surgery. LSOS or DAAO administration suppressed the CCI-induced development of mechanical allodynia and protein kinase C (PKC)-dependent (Ser896) phosphorylation of GluN1 on day 3 post-surgery, which were reversed by the co-administration of the NO donor, 3-morpholinosydnonimine hydrochloride (SIN-1). In naïve mice, exogenous D-serine increased NO levels via decreases in pnNOS. D-serine-induced increases in mechanical hypersensitivity, NO levels, PKC-dependent pGluN1, and NMDA-induced spontaneous nociception were reduced by pretreatment with the nNOS inhibitor, 7-nitroindazole or with the NMDA receptor antagonists, 7-chlorokynurenic acid and MK-801. Collectively, we show that spinal D-serine modulates nNOS activity and concomitant NO production leading to increases in PKC-dependent pGluN1 and ultimately contributing to the induction of mechanical allodynia following peripheral nerve injury.


Subject(s)
Astrocytes/metabolism , Hyperalgesia/metabolism , Neuralgia/metabolism , Nitric Oxide Synthase Type I/metabolism , Serine/pharmacology , Animals , Blotting, Western , D-Amino-Acid Oxidase/metabolism , Hyperalgesia/etiology , Male , Mice , Molsidomine/analogs & derivatives , Molsidomine/pharmacology , N-Methylaspartate/metabolism , Neuralgia/etiology , Phosphorylation/drug effects , Receptors, N-Methyl-D-Aspartate/metabolism , Serine/analogs & derivatives , Serine/metabolism
11.
Neuropharmacology ; 149: 169-180, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30797030

ABSTRACT

While evidence indicates that sigma-1 receptors (Sig-1Rs) play an important role in the induction of peripheral neuropathic pain, there is limited understanding of the role that the neurosteroidogenic enzymes, which produce Sig-1R endogenous ligands, play during the development of neuropathic pain. We examined whether sciatic nerve injury upregulates the neurosteroidogenic enzymes, cytochrome P450c17 and 3ß-hydroxysteroid dehydrogenase (3ß-HSD), which modulate the expression and/or activation of Sig-1Rs leading to the development of peripheral neuropathic pain. Chronic constriction injury (CCI) of the sciatic nerve induced a significant increase in the expression of P450c17, but not 3ß-HSD, in the ipsilateral lumbar spinal cord dorsal horn at postoperative day 3. Intrathecal administration of the P450c17 inhibitor, ketoconazole during the induction phase of neuropathic pain (day 0 to day 3 post-surgery) significantly reduced the development of mechanical allodynia and thermal hyperalgesia in the ipsilateral hind paw. However, administration of the 3ß-HSD inhibitor, trilostane had no effect on the development of neuropathic pain. Sciatic nerve injury increased astrocyte Sig-1R expression as well as dissociation of Sig-1Rs from BiP in the spinal cord. These increases were suppressed by administration of ketoconazole, but not by administration of trilostane. Co-administration of the Sig-1R agonist, PRE084 restored the development of mechanical allodynia originally suppressed by the ketoconazole administration. However, ketoconazole-induced inhibition of thermal hyperalgesia was not affected by co-administration of PRE084. Collectively these results demonstrate that early activation of P450c17 modulates the expression and activation of astrocyte Sig-1Rs, ultimately contributing to the development of mechanical allodynia induced by peripheral nerve injury.


Subject(s)
Hyperalgesia/metabolism , Neuralgia/metabolism , Peripheral Nerve Injuries/metabolism , Receptors, sigma/metabolism , Spinal Cord/enzymology , Steroid 17-alpha-Hydroxylase/metabolism , 3-Hydroxysteroid Dehydrogenases/metabolism , Animals , Astrocytes , Dihydrotestosterone/analogs & derivatives , Dihydrotestosterone/pharmacology , Disease Models, Animal , Hyperalgesia/chemically induced , Hyperalgesia/enzymology , Hyperalgesia/prevention & control , Ketoconazole/pharmacology , Male , Mice , Mice, Inbred ICR , Neuralgia/enzymology , Neurosteroids/metabolism , Peripheral Nerve Injuries/chemically induced , Peripheral Nerve Injuries/enzymology , Peripheral Nervous System Diseases/metabolism , Peripheral Nervous System Diseases/pathology , Receptors, sigma/agonists , Sciatic Nerve/enzymology , Sciatic Nerve/injuries , Sciatic Nerve/metabolism , Sciatic Nerve/pathology , Spinal Cord/drug effects , Spinal Cord Dorsal Horn/metabolism , Sigma-1 Receptor
12.
J Vet Sci ; 19(5): 708-715, 2018 Sep 30.
Article in English | MEDLINE | ID: mdl-29929357

ABSTRACT

Respiratory inflammation is a frequent and fatal pathologic state encountered in veterinary medicine. Although diluted bee venom (dBV) has potent anti-inflammatory effects, the clinical use of dBV is limited to several chronic inflammatory diseases. The present study was designed to propose an acupoint dBV treatment as a novel therapeutic strategy for respiratory inflammatory disease. Experimental pleurisy was induced by injection of carrageenan into the left pleural space in mouse. The dBV was injected into a specific lung meridian acupoint (LU-5) or into an arbitrary non-acupoint located near the midline of the back in mouse. The inflammatory responses were evaluated by analyzing inflammatory indicators in pleural exudate. The dBV injection into the LU-5 acupoint significantly suppressed the carrageenan-induced increase of pleural exudate volume, leukocyte accumulation, and myeloperoxidase activity. Moreover, dBV acupoint treatment effectively inhibited the production of interleukin 1 beta, but not tumor necrosis factor alpha in the pleural exudate. On the other hand, dBV treatment at non-acupoint did not inhibit the inflammatory responses in carrageenan-induced pleurisy. The present results demonstrate that dBV stimulation in the LU-5 lung meridian acupoint can produce significant anti-inflammatory effects on carrageenan-induced pleurisy suggesting that dBV acupuncture may be a promising alternative medicine therapy for respiratory inflammatory diseases.


Subject(s)
Acupuncture Points , Bee Venoms/therapeutic use , Inflammation/therapy , Pleurisy/therapy , Animals , Carrageenan/pharmacology , Inflammation/chemically induced , Lung/immunology , Male , Mice , Mice, Inbred BALB C , Pleurisy/chemically induced
13.
J Pain ; 19(10): 1157-1168, 2018 10.
Article in English | MEDLINE | ID: mdl-29758357

ABSTRACT

Chemotherapy-induced neuropathic pain is a common dose-limiting side effect of anticancerdrugs but lacks an effective treatment strategy. Scolopendra subspinipes has been used in traditional medicine to treat chronic neuronal diseases. Moreover, pharmacopuncture with S subspinipes (SSP) produces potent analgesia in humans and experimental animals. In this study, we examined the effect of SSP into the ST36 acupoint on oxaliplatin-induced mechanical allodynia in mice. Acupoint treatment with SSP (0.5%/20 µL) significantly decreased mechanical allodynia produced by a single oxaliplatin injection (10mg/kg i.p.), which was completely prevented by acupoint preinjection of lidocaine. Intrathecal treatment with yohimbine (25 µg/5 µL), an α2-adrenoceptor antagonist, prevented the anti-allodynic effect of SSP. In contrast, a high dose (0.1mg/kg i.p.) ofclonidine,an α2-adrenoceptor agonist, suppressed oxaliplatin-induced mechanical allodynia butproduced severe side effects including hypotension, bradycardia, and motor impairment. The combination of SSP with a lower dose of clonidine (0.03 mg/kg) produced a comparable analgesic effect without side effects. Collectively, our findings demonstrate that SSP produces an analgesic effect in oxaliplatin-induced pain via neuronal conduction at the acupoint and activation of spinal α2-adrenoceptors. Moreover, acombination of low-dose clonidine with SSP represents a novel and safe therapeutic strategy for chemotherapy-induced chronic pain. PERSPECTIVE: SSP can relieve oxaliplatin-induced mechanical allodynia. Moreover, SSP potentiates clonidine-induced anti-allodynia, allowing a lower dose of clonidine with no significant side effects. The combination of SSP and low-dose clonidine might provide a novel strategy for the management of chemotherapy-induced peripheral neuropathy.


Subject(s)
Arthropod Venoms/pharmacology , Hyperalgesia , Neuralgia , Acupuncture Points , Analgesics/pharmacology , Animals , Antineoplastic Agents/toxicity , Clonidine/pharmacology , Hyperalgesia/chemically induced , Hypotension , Male , Mice , Motor Disorders , Neuralgia/chemically induced , Neuralgia/prevention & control , Oxaliplatin/toxicity
14.
Biol Pharm Bull ; 41(2): 172-181, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29187670

ABSTRACT

Despite the relatively high prevalence of migraine or headache, the pathophysiological mechanisms triggering headache-associated peripheral hypersensitivities, are unknown. Since nitric oxide (NO) is well known as a causative factor in the pathogenesis of migraine or migraine-associated hypersensitivities, a mouse model has been established using systemic administration of the NO donor, nitroglycerin (NTG). Here we tried to investigate the time course development of facial or hindpaw hypersensitivity after repetitive NTG injection. NTG (10 mg/kg) was administrated to mice every other day for nine days. Two hours post-injection, NTG produced acute mechanical and heat hypersensitivity in the hind paws. By contrast, cold allodynia, but not mechanical hypersensitivity, occurred in the facial region. Moreover, this hindpaws mechanical hypersensitivity and the facial cold allodynia was progressive and long-lasting. We subsequently examined whether the depletion of capsaicin-sensitive primary afferents (CSPAs) with resiniferatoxin (RTX, 0.02 mg/kg) altered these peripheral hypersensitivities in NTG-treated mice. RTX pretreatment did not affect the NTG-induced mechanical allodynia in the hind paws nor the cold allodynia in the facial region, but it did inhibit the development of hind paw heat hyperalgesia. Similarly, NTG injection produced significant hindpaw mechanical allodynia or facial cold allodynia, but not heat hyperalgesia in transient receptor potential type V1 (TRPV1) knockout mice. These findings demonstrate that different peripheral hypersensitivities develop in the face versus hindpaw regions in a mouse model of repetitive NTG-induced migraine, and that these hindpaw mechanical hypersensitivity and facial cold allodynia are not mediated by the activation of CSPAs.


Subject(s)
Facial Nerve Diseases/physiopathology , Hyperalgesia/physiopathology , Migraine Disorders/physiopathology , Nerve Tissue Proteins/metabolism , Neurons, Afferent/drug effects , Peripheral Nervous System Diseases/physiopathology , TRPV Cation Channels/metabolism , Animals , Capsaicin/pharmacology , Cold Temperature/adverse effects , Diterpenes/toxicity , Drug Resistance , Facial Nerve Diseases/chemically induced , Facial Nerve Diseases/metabolism , Facial Nerve Diseases/pathology , Hindlimb , Hot Temperature/adverse effects , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , Hyperalgesia/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Migraine Disorders/metabolism , Migraine Disorders/pathology , Nerve Tissue Proteins/agonists , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/genetics , Neurons, Afferent/metabolism , Neurons, Afferent/pathology , Neurotoxins/toxicity , Nitric Oxide Donors/toxicity , Nitroglycerin/toxicity , Organ Specificity , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/metabolism , Peripheral Nervous System Diseases/pathology , Sensory System Agents/pharmacology , TRPV Cation Channels/agonists , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/genetics
15.
Br J Pharmacol ; 175(3): 558-572, 2018 02.
Article in English | MEDLINE | ID: mdl-29172248

ABSTRACT

BACKGROUND AND PURPOSE: Although we have recently demonstrated that spinal astrocyte gap junctions mediate the development of mirror-image pain (MIP), it is still unclear which astrocyte-derived factor is responsible for the development of MIP and how its production is controlled. In the present study, we focused on the role of ipsilateral versus contralateral D-serine in the development of MIP and investigated the possible involvement of σ1 receptors and gap junctions in astrocyte D-serine production. EXPERIMENTAL APPROACH: Following carrageenan injection, mechanical allodynia was tested at various time points to examine the effect of individual drugs. Immunohistochemistry and Western blot analyses were performed to clarify the expression levels of spinal D-serine, serine racemase, σ1 receptors and connexin 43. KEY RESULTS: The expression of ipsilateral D-serine was up-regulated during the early phase of inflammation, while contralateral D-serine increased during the later phase of inflammation. The pharmacological inhibition of D-serine during the early phase blocked the development of both ipsilateral and contralateral mechanical allodynia. However, the inhibition of D-serine during the later phase of inflammation blocked contralateral, but not ipsilateral mechanical allodynia. Furthermore, the inhibition of σ1 receptors during the earlier phase of inflammation inhibited the increase in ipsilateral D-serine. Conversely, the blockade of astrocyte gap junctions suppressed the up-regulation of contralateral D-serine during the later phase of inflammation. CONCLUSION AND IMPLICATIONS: Spinal astrocyte D-serine plays an important role in the development of mirror-image pain. Furthermore, σ1 receptors and astrocyte gap junction signalling mediate ipsilateral and contralateral D-serine production respectively.


Subject(s)
Astrocytes/physiology , Carrageenan/toxicity , Gap Junctions/physiology , Pain/drug therapy , Receptors, sigma/physiology , Serine/administration & dosage , Animals , Astrocytes/drug effects , Dose-Response Relationship, Drug , Gap Junctions/drug effects , Injections, Spinal , Male , Pain/chemically induced , Pain Measurement/drug effects , Pain Measurement/methods , Rats , Rats, Sprague-Dawley , Spinal Cord/drug effects , Spinal Cord/physiology , Sigma-1 Receptor
16.
Mol Pain ; 13: 1744806916688902, 2017 01.
Article in English | MEDLINE | ID: mdl-28326932

ABSTRACT

Background Self-injurious behaviors (SIBs) are devastating traits in autism spectrum disorder (ASD). Although deficits in pain sensation might be one of the contributing factors underlying the development of SIBs, the mechanisms have yet to be addressed. Recently, the Shank2 synaptic protein has been considered to be a key component in ASD, and mutations of SHANK2 gene induce the dysfunction of N-methyl-D-aspartate (NMDA) receptors, suggesting a link between Shank2 and NMDA receptors in ASD. Given that spinal NMDA receptors play a pivotal role in pain hypersensitivity, we investigated the possible role of Shank2 in nociceptive hypersensitivity by examining changes in spontaneous pain following intrathecal NMDA injection in S hank2-/- ( Shank2 knock-out, KO) mice. Results Intrathecal NMDA injection evoked spontaneous nociceptive behaviors. These NMDA-induced nociceptive responses were significantly reduced in Shank2 KO mice. We also observed a significant decrease of NMDA currents in the spinal dorsal horn of Shank2 KO mice. Subsequently, we examined whether mitogen-activated protein kinase or AKT signaling is involved in this reduced pain behavior in Shank2 KO mice because the NMDA receptor is closely related to these signaling molecules. Western blotting and immunohistochemistry revealed that spinally administered NMDA increased the expression of a phosphorylated form of extracellular signal-regulated kinase (p-ERK) which was significantly reduced in Shank2 KO mice. However, p38, JNK, or AKT were not changed by NMDA administration. The ERK inhibitor, PD98059, decreased NMDA-induced spontaneous pain behaviors in a dose-dependent manner in wild-type mice. Moreover, it was found that the NMDA-induced increase in p-ERK was primarily colocalized with Shank2 proteins in the spinal cord dorsal horn. Conclusion Shank2 protein is involved in spinal NMDA receptor-mediated pain, and mutations of Shank2 may suppress NMDA-ERK signaling in spinal pain transmission. This study provides new clues into the mechanisms underlying pain deficits associated with SIB and deserves further study in patients with ASD.


Subject(s)
Hyperalgesia/physiopathology , Nerve Tissue Proteins/metabolism , Nociception/drug effects , Pain/pathology , Spinal Cord/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Disease Models, Animal , Excitatory Amino Acid Agonists/toxicity , Female , Flavonoids/pharmacology , Hyperalgesia/chemically induced , Imidazoles/pharmacology , MAP Kinase Signaling System/drug effects , Membrane Potentials/drug effects , Membrane Potentials/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , N-Methylaspartate/toxicity , Nerve Tissue Proteins/genetics , Pain/chemically induced , Pain Measurement , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Spinal Cord/drug effects
17.
Brain Res Bull ; 130: 165-172, 2017 04.
Article in English | MEDLINE | ID: mdl-28153540

ABSTRACT

Although interleukin-1ß (IL-1ß) is a prototypical pro-inflammatory cytokine, the specific mechanisms underlying the role of its cognate receptor, the interleukin-1 receptor (IL-1R) in peripheral sensitization remain to be investigated. Since emerging evidence in the literature indicates that IL-1ß can modulate membrane-bound receptors, we decided to examine the involvement of P2Y1 receptor (P2Y1R) in IL-1ß induced pain and the potential interaction of P2Y1Rs and IL-1Rs in both naïve and carrageenan injected rats. Intraplantar (i.pl) injection of IL-1ß dose-dependently produced mechanical and thermal hypersensitivity in naïve rats. Pre-treatment with IL-1ra (i.pl, 30 and 100ng), an endogenous IL-1R antagonist, prevented the IL-1ß induced mechanical and thermal hypersensitivity. Pre-treatment with MRS2500 (i.pl, 1 and 3nmol), a specific P2Y1R antagonist, dose-dependently reduced IL-1ß induced thermal hypersensitivity, but did not affect the development of mechanical hypersensitivity. Conversely coadministration of MRS2500 (i.pl, 0.1nmol, sub-effective dose) together with IL-1ra (10nmol, sub-effective dose) significantly reduced IL-1ß induced thermal, but not mechanical hypersensitivity. We next used immunohistochemistry to demonstrate that P2Y1 and IL-1 type I receptors co-localize predominantly in small diameter neurons in the dorsal root ganglion. We also performed experiments to examine the interaction of P2Y1Rs and IL-1Rs under the inflammatory conditions induced by 2% carrageenan. Intraplantar coadministration of MRS2500 (3nmol, sub-effective dose) and IL-1ra (30ng, sub-effective dose) significantly reduced inflammatory thermal, but not mechanical, hypersensitivity. These data indicate the involvement of P2Y1Rs in IL-1ß mediated pain in both naive and carrageenan injected rats. There is a positive interaction between peripheral P2Y1Rs and IL-1Rs in both IL-1ß and carrageenan-induced thermal hypersensitivity.


Subject(s)
Hyperalgesia/physiopathology , Interleukin-1beta/physiology , Receptors, Interleukin-1/physiology , Receptors, Purinergic P2Y1/physiology , Animals , Carrageenan/administration & dosage , Hyperalgesia/chemically induced , Interleukin-1beta/administration & dosage , Male , Pain Threshold , Rats, Sprague-Dawley
18.
J Pain ; 18(4): 415-427, 2017 04.
Article in English | MEDLINE | ID: mdl-27986591

ABSTRACT

We have recently shown that spinal sigma-1 receptor (Sig-1R) activation facilitates nociception via an increase in phosphorylation of the N-methyl-D-aspartate (NMDA) receptor GluN1 subunit (pGluN1). The present study was designed to examine whether the Sig-1R-induced facilitative effect on NMDA-induced nociception is mediated by D-serine, and whether D-serine modulates spinal pGluN1 expression and the development of neuropathic pain after chronic constriction injury (CCI) of the sciatic nerve. Intrathecal administration of the D-serine degrading enzyme, D-amino acid oxidase attenuated the facilitation of NMDA-induced nociception induced by the Sig-1R agonist, 2-(4-morpholinethyl)1-phenylcyclohexane carboxylate. Exogenous D-serine increased protein kinase C (PKC)-dependent (Ser896) pGluN1 expression and facilitated NMDA-induced nociception, which was attenuated by preteatment with the PKC inhibitor, chelerythrine. In CCI mice, administration of the serine racemase inhibitor, L-serine O-sulfate potassium salt or D-amino acid oxidase on postoperative days 0 to 3 suppressed CCI-induced mechanical allodynia (MA) and pGluN1 expression on day 3 after CCI surgery. Intrathecal administration of D-serine restored MA as well as the GluN1 phosphorylation on day 3 after surgery that was suppressed by the Sig-1R antagonist, N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine dihydrobromide or the astrocyte inhibitor, fluorocitrate. In contrast, D-serine had no effect on CCI-induced thermal hyperalgesia or GluN1 expression. These results indicate that spinal D-serine: 1) mediates the facilitative effect of Sig-1R on NMDA-induced nociception, 2) modulates PKC-dependent pGluN1 expression, and 3) ultimately contributes to the induction of MA after peripheral nerve injury. PERSPECTIVE: This report shows that reducing D-serine suppresses central sensitization and significantly alleviates peripheral nerve injury-induced chronic neuropathic pain and that this process is modulated by spinal Sig-1Rs. This preclinical evidence provides a strong rationale for using D-serine antagonists to treat peripheral nerve injury-induced neuropathy.


Subject(s)
Hyperalgesia/etiology , Nerve Tissue Proteins/metabolism , Neuralgia/complications , Protein Kinase C/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, sigma/metabolism , Serine/pharmacology , Animals , D-Amino-Acid Oxidase/metabolism , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Ethylenediamines/pharmacology , Excitatory Amino Acid Agonists/pharmacology , Gene Expression Regulation/drug effects , Male , Mice , Mice, Inbred ICR , Morpholines/pharmacology , N-Methylaspartate/pharmacology , N-Methylaspartate/toxicity , Phosphorylation/drug effects , Physical Stimulation/adverse effects , Receptors, sigma/antagonists & inhibitors , Spinal Cord/drug effects , Sigma-1 Receptor
19.
Exp Neurol ; 287(Pt 1): 1-13, 2017 01.
Article in English | MEDLINE | ID: mdl-27776252

ABSTRACT

Although we have recently demonstrated that carrageenan-induced inflammation upregulates the expression of spinal interleukin (IL)-1ß, which inhibits spinal astrocyte activation and results in the delayed development of Mirror-Image Pain (MIP), little is known regarding the mechanisms that underlie how spinal IL-1ß inhibits the astrocyte activation. In this study, we examined the effect of spinal IL-1ß on astrocyte gap junctions (GJ) and the development of MIP. Following unilateral carrageenan (CA) injection, mechanical allodynia (MA) was evaluated at various time points. Immunohistochemistry and Western blot analysis were used to determine changes in the expression of GFAP and connexins (Cx) in the spinal cord dorsal horn. Carrageenan rats showed a delayed onset of contralateral MA, which mimicked the temporal expression pattern of spinal Cx43 (an astrocyte gap junctional protein) and GFAP. Intrathecal administration of an interleukin-1 receptor antagonist (IL-1ra) twice-a-day on post-carrageenan injection days 0 to 3 caused a significant increase in contralateral MA and spinal Cx43 and GFAP expression. In addition, co-administration of IL-1ß with IL-1ra blocked the IL-1ra-induced increase in contralateral MA and the upregulated expression of spinal Cx43 and GFAP. Finally, co-administration of carbenoxolone (CBX; a GJ decoupler) or Gap26 (a specific Cx43 mimetic blocking peptide) with IL-1ra significantly blocked the IL-1ra-induced early development of contralateral MA and the associated upregulation of spinal Cx43 and GFAP expression. These results demonstrate that spinal IL-1ß suppresses Cx43 expression and astrocyte activation during the early phase of CA-induced inflammation resulting in the delayed onset of contralateral MA. These findings imply that spinal IL-1ß can inhibit astrocyte activation and regulate the time of induction of contralateral MA through modulation of spinal Cx43 expression.

20.
Neuropharmacology ; 111: 34-46, 2016 12.
Article in English | MEDLINE | ID: mdl-27567941

ABSTRACT

We have previously shown using a spinal cord injury (SCI) model that gap junctions contribute to the early spread of astrocyte activation in the lumbar spinal cord and that this astrocyte communication plays critical role in the induction of central neuropathic pain. Sigma-1 receptors (Sig-1Rs) have been implicated in spinal astrocyte activation and the development of peripheral neuropathic pain, yet their contribution to central neuropathic pain remains unknown. Thus, we investigated whether SCI upregulates spinal Sig-1Rs, which in turn increase the expression of the astrocytic gap junction protein, connexin 43 (Cx43) leading to the induction of central neuropathic pain. A thoracic spinal cord hemisection significantly increased both astrocyte activation and Cx43 expression in lumbar dorsal horn. Sig-1Rs were also increased in lumbar dorsal horn astrocytes, but not neurons or microglia. Intrathecal injection of an astrocyte metabolic inhibitor (fluorocitrate); a gap junction/hemichannel blocker (carbenoxolone); or a Cx43 mimetic peptide (43Gap26) significantly reduced SCI-induced bilateral below-level mechanical allodynia. Blockade of Sig-1Rs with BD1047 during the induction phase of pain significantly suppressed the SCI-induced development of mechanical allodynia, astrocyte activation, increased expression of Cx43 in both total and membrane levels, and increased association of Cx43 with Sig-1R. However, SCI did not change the expression of oligodendrocyte (Cx32) or neuronal (Cx36) gap junction proteins. These findings demonstrate that SCI activates astrocyte Sig-1Rs leading to increases in the expression of the gap junction protein, Cx43 and astrocyte activation in the lumbar dorsal horn, and ultimately contribute to the induction of bilateral below-level mechanical allodynia.


Subject(s)
Astrocytes/metabolism , Connexin 43/metabolism , Hyperalgesia/metabolism , Neuralgia/metabolism , Receptors, sigma/metabolism , Spinal Cord Dorsal Horn/metabolism , Spinal Cord Injuries/complications , Animals , Connexin 43/physiology , Disease Models, Animal , Ethylenediamines/administration & dosage , Hyperalgesia/complications , Male , Mice , Mice, Inbred ICR , Neuralgia/complications , Receptors, sigma/antagonists & inhibitors , Sigma-1 Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...