Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
Nat Commun ; 13(1): 5051, 2022 08 27.
Article in English | MEDLINE | ID: mdl-36030255

ABSTRACT

Autism spectrum disorder is characterized by early postnatal symptoms, although little is known about the mechanistic deviations that produce them and whether correcting them has long-lasting preventive effects on adult-stage deficits. ARID1B, a chromatin remodeler implicated in neurodevelopmental disorders, including autism spectrum disorder, exhibits strong embryonic- and early postnatal-stage expression. We report here that Arid1b-happloinsufficient (Arid1b+/-) mice display autistic-like behaviors at juvenile and adult stages accompanied by persistent decreases in excitatory synaptic density and transmission. Chronic treatment of Arid1b+/- mice with fluoxetine, a selective serotonin-reuptake inhibitor, during the first three postnatal weeks prevents synaptic and behavioral deficits in adults. Mechanistically, these rescues accompany transcriptomic changes, including upregulation of FMRP targets and normalization of HDAC4/MEF2A-related transcriptional regulation of the synaptic proteins, SynGAP1 and Arc. These results suggest that chronic modulation of serotonergic receptors during critical early postnatal periods prevents synaptic and behavioral deficits in adult Arid1b+/- mice through transcriptional reprogramming.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Serotonin , Transcription Factors , Animals , Fluoxetine , Haploinsufficiency , Mice , Serotonin/metabolism , Transcription Factors/genetics , ras GTPase-Activating Proteins
3.
Front Mol Neurosci ; 15: 857820, 2022.
Article in English | MEDLINE | ID: mdl-35321029

ABSTRACT

SLC6A20A is a proline and glycine transporter known to regulate glycine homeostasis and NMDA receptor (NMDAR) function in the brain. A previous study found increases in ambient glycine levels and NMDA receptor-mediated synaptic transmission in the brains of Slc6a20a-haploinsufficient mice, but it remained unknown whether Slc6a20a deficiency leads to disease-related behavioral deficits in mice. Here, we report that Slc6a20a heterozygous and homozygous mutant mice display differential behavioral phenotypes in locomotor, repetitive behavioral, and spatial and fear memory domains. In addition, these mice show differential transcriptomic changes in synapse, ribosome, mitochondria, autism, epilepsy, and neuron-related genes. These results suggest that heterozygous and homozygous Slc6a20a deletions in mice lead to differential changes in behaviors and transcriptomes.

4.
Nat Commun ; 12(1): 2695, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33976205

ABSTRACT

mTOR signaling, involving mTORC1 and mTORC2 complexes, critically regulates neural development and is implicated in various brain disorders. However, we do not fully understand all of the upstream signaling components that can regulate mTOR signaling, especially in neurons. Here, we show a direct, regulated inhibition of mTOR by Tanc2, an adaptor/scaffolding protein with strong neurodevelopmental and psychiatric implications. While Tanc2-null mice show embryonic lethality, Tanc2-haploinsufficient mice survive but display mTORC1/2 hyperactivity accompanying synaptic and behavioral deficits reversed by mTOR-inhibiting rapamycin. Tanc2 interacts with and inhibits mTOR, which is suppressed by mTOR-activating serum or ketamine, a fast-acting antidepressant. Tanc2 and Deptor, also known to inhibit mTORC1/2 minimally affecting neurodevelopment, distinctly inhibit mTOR in early- and late-stage neurons. Lastly, Tanc2 inhibits mTORC1/2 in human neural progenitor cells and neurons. In summary, our findings show that Tanc2 is a mTORC1/2 inhibitor affecting neurodevelopment.


Subject(s)
Brain/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Neurons/metabolism , Proteins/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Brain/embryology , Brain/growth & development , Cells, Cultured , HEK293 Cells , Humans , Immunosuppressive Agents/pharmacology , Learning Disabilities/genetics , Learning Disabilities/physiopathology , Maze Learning/drug effects , Maze Learning/physiology , Memory Disorders/genetics , Memory Disorders/physiopathology , Mice, Inbred C57BL , Mice, Knockout , Neuronal Plasticity/drug effects , Neuronal Plasticity/genetics , Neuronal Plasticity/physiology , Proteins/genetics , Signal Transduction/drug effects , Sirolimus/pharmacology
5.
EMBO Mol Med ; 13(2): e12632, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33428810

ABSTRACT

Glycine transporters (GlyT1 and GlyT2) that regulate levels of brain glycine, an inhibitory neurotransmitter with co-agonist activity for NMDA receptors (NMDARs), have been considered to be important targets for the treatment of brain disorders with suppressed NMDAR function such as schizophrenia. However, it remains unclear whether other amino acid transporters expressed in the brain can also regulate brain glycine levels and NMDAR function. Here, we report that SLC6A20A, an amino acid transporter known to transport proline based on in vitro data but is understudied in the brain, regulates proline and glycine levels and NMDAR function in the mouse brain. SLC6A20A transcript and protein levels were abnormally increased in mice carrying a mutant PTEN protein lacking the C terminus through enhanced ß-catenin binding to the Slc6a20a gene. These mice displayed reduced extracellular levels of brain proline and glycine and decreased NMDAR currents. Elevating glycine levels back to normal ranges by antisense oligonucleotide-induced SLC6A20 knockdown, or the competitive GlyT1 antagonist sarcosine, normalized NMDAR currents and repetitive climbing behavior observed in these mice. Conversely, mice lacking SLC6A20A displayed increased extracellular glycine levels and NMDAR currents. Lastly, both mouse and human SLC6A20 proteins mediated proline and glycine transports, and SLC6A20 proteins could be detected in human neurons. These results suggest that SLC6A20 regulates proline and glycine homeostasis in the brain and that SLC6A20 inhibition has therapeutic potential for brain disorders involving NMDAR hypofunction.


Subject(s)
Glycine , Receptors, N-Methyl-D-Aspartate , Animals , Brain/metabolism , Glycine Plasma Membrane Transport Proteins/genetics , Glycine Plasma Membrane Transport Proteins/metabolism , Homeostasis , Membrane Transport Proteins , Mice , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism
6.
Nat Neurosci ; 21(9): 1218-1228, 2018 09.
Article in English | MEDLINE | ID: mdl-30104731

ABSTRACT

Autism spectrum disorders (ASDs) are four times more common in males than in females, but the underlying mechanisms are poorly understood. We characterized sexually dimorphic changes in mice carrying a heterozygous mutation in Chd8 (Chd8+/N2373K) that was first identified in human CHD8 (Asn2373LysfsX2), a strong ASD-risk gene that encodes a chromatin remodeler. Notably, although male mutant mice displayed a range of abnormal behaviors during pup, juvenile, and adult stages, including enhanced mother-seeking ultrasonic vocalization, enhanced attachment to reunited mothers, and isolation-induced self-grooming, their female counterparts do not. This behavioral divergence was associated with sexually dimorphic changes in neuronal activity, synaptic transmission, and transcriptomic profiles. Specifically, female mice displayed suppressed baseline neuronal excitation, enhanced inhibitory synaptic transmission and neuronal firing, and increased expression of genes associated with extracellular vesicles and the extracellular matrix. Our results suggest that a human CHD8 mutation leads to sexually dimorphic changes ranging from transcription to behavior in mice.


Subject(s)
Behavior, Animal/physiology , DNA-Binding Proteins/biosynthesis , Gene Expression/physiology , Neurons/physiology , Sex Characteristics , Animals , Anxiety, Separation/genetics , Anxiety, Separation/psychology , DNA-Binding Proteins/genetics , Extracellular Matrix/metabolism , Extracellular Matrix/physiology , Female , Hippocampus/physiology , Male , Mice , Mice, Inbred C57BL , Object Attachment , Signal Transduction/physiology , Social Behavior , Synaptic Transmission/genetics , Synaptic Transmission/physiology , Transcriptome , Vocalization, Animal
7.
Cell Rep ; 23(13): 3839-3851, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29949768

ABSTRACT

Netrin-G ligand 2 (NGL-2)/LRRC4, implicated in autism spectrum disorders and schizophrenia, is a leucine-rich repeat-containing postsynaptic adhesion molecule that interacts intracellularly with the excitatory postsynaptic scaffolding protein PSD-95 and trans-synaptically with the presynaptic adhesion molecule netrin-G2. Functionally, NGL-2 regulates excitatory synapse development and synaptic transmission. However, whether it regulates synaptic plasticity and disease-related specific behaviors is not known. Here, we report that mice lacking NGL-2 (Lrrc4-/- mice) show suppressed N-Methyl-D-aspartate receptor (NMDAR)-dependent synaptic plasticity in the hippocampus. NGL-2 associates with NMDARs through both PSD-95-dependent and -independent mechanisms. Moreover, Lrrc4-/- mice display mild social interaction deficits and repetitive behaviors that are rapidly improved by pharmacological NMDAR activation. These results suggest that NGL-2 promotes synaptic stabilization of NMDARs, regulates NMDAR-dependent synaptic plasticity, and prevents autistic-like behaviors from developing in mice, supporting the hypothesis that NMDAR dysfunction contributes to autism spectrum disorders.


Subject(s)
Autistic Disorder/pathology , Nerve Tissue Proteins/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Autistic Disorder/metabolism , Cycloserine/pharmacology , Disease Models, Animal , Disks Large Homolog 4 Protein/chemistry , Disks Large Homolog 4 Protein/metabolism , Golgi Apparatus/metabolism , Hippocampus/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/deficiency , Neuronal Plasticity/drug effects , Protein Binding , Protein Subunits/chemistry , Protein Subunits/metabolism , Receptors, N-Methyl-D-Aspartate/agonists , Spatial Learning , Synapses/metabolism , Synaptic Transmission/drug effects
8.
J Neurosci ; 38(26): 5872-5887, 2018 06 27.
Article in English | MEDLINE | ID: mdl-29798891

ABSTRACT

SALM1 (SALM (synaptic adhesion-like molecule), also known as LRFN2 (leucine rich repeat and fibronectin type III domain containing), is a postsynaptic density (PSD)-95-interacting synaptic adhesion molecule implicated in the regulation of NMDA receptor (NMDAR) clustering largely based on in vitro data, although its in vivo functions remain unclear. Here, we found that mice lacking SALM1/LRFN2 (Lrfn2-/- mice) show a normal density of excitatory synapses but altered excitatory synaptic function, including enhanced NMDAR-dependent synaptic transmission but suppressed NMDAR-dependent synaptic plasticity in the hippocampal CA1 region. Unexpectedly, SALM1 expression was detected in both glutamatergic and GABAergic neurons and Lrfn2-/- CA1 pyramidal neurons showed decreases in the density of inhibitory synapses and the frequency of spontaneous inhibitory synaptic transmission. Behaviorally, ultrasonic vocalization was suppressed in Lrfn2-/- pups separated from their mothers and acoustic startle was enhanced, but locomotion, anxiety-like behavior, social interaction, repetitive behaviors, and learning and memory were largely normal in adult male Lrfn2-/- mice. These results suggest that SALM1/LRFN2 regulates excitatory synapse function, inhibitory synapse development, and social communication and startle behaviors in mice.SIGNIFICANCE STATEMENT Synaptic adhesion molecules regulate synapse development and function, which govern neural circuit and brain functions. The SALM/LRFN (synaptic adhesion-like molecule/leucine rich repeat and fibronectin type III domain containing) family of synaptic adhesion proteins consists of five known members for which the in vivo functions are largely unknown. Here, we characterized mice lacking SALM1/LRFN2 (SALM1 KO) known to associate with NMDA receptors (NMDARs) and found that these mice showed altered NMDAR-dependent synaptic transmission and plasticity, as expected, but unexpectedly also exhibited suppressed inhibitory synapse development and synaptic transmission. Behaviorally, SALM1 KO pups showed suppressed ultrasonic vocalization upon separation from their mothers and SALM1 KO adults showed enhanced responses to loud acoustic stimuli. These results suggest that SALM1/LRFN2 regulates excitatory synapse function, inhibitory synapse development, social communication, and acoustic startle behavior.


Subject(s)
Membrane Glycoproteins/physiology , Nerve Tissue Proteins/physiology , Neuronal Plasticity/physiology , Pyramidal Cells/physiology , Reflex, Startle/physiology , Vocalization, Animal/physiology , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Social Behavior , Synapses/physiology , Synaptic Transmission/physiology
9.
Nat Commun ; 7: 12328, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27480238

ABSTRACT

Synaptic adhesion molecules regulate various aspects of synapse development, function and plasticity. These functions mainly involve trans-synaptic interactions and positive regulations, whereas cis-interactions and negative regulation are less understood. Here we report that SALM4, a member of the SALM/Lrfn family of synaptic adhesion molecules, suppresses excitatory synapse development through cis inhibition of SALM3, another SALM family protein with synaptogenic activity. Salm4-mutant (Salm4(-/-)) mice show increased excitatory synapse numbers in the hippocampus. SALM4 cis-interacts with SALM3, inhibits trans-synaptic SALM3 interaction with presynaptic LAR family receptor tyrosine phosphatases and suppresses SALM3-dependent presynaptic differentiation. Importantly, deletion of Salm3 in Salm4(-/-) mice (Salm3(-/-); Salm4(-/-)) normalizes the increased excitatory synapse number. These results suggest that SALM4 negatively regulates excitatory synapses via cis inhibition of the trans-synaptic SALM3-LAR adhesion.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Cell Differentiation/physiology , Neural Cell Adhesion Molecules/metabolism , Presynaptic Terminals/physiology , Pyramidal Cells/physiology , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/physiology , Cell Adhesion/physiology , Cell Adhesion Molecules, Neuronal/genetics , Excitatory Postsynaptic Potentials/physiology , Female , Male , Membrane Glycoproteins , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Nerve Tissue Proteins , Neural Cell Adhesion Molecules/genetics , Synaptic Transmission/physiology
10.
Nat Neurosci ; 19(1): 84-93, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26595655

ABSTRACT

Synaptic adhesion molecules regulate synapse development and plasticity through mechanisms that include trans-synaptic adhesion and recruitment of diverse synaptic proteins. We found that the immunoglobulin superfamily member 11 (IgSF11), a homophilic adhesion molecule that preferentially expressed in the brain, is a dual-binding partner of the postsynaptic scaffolding protein PSD-95 and AMPA glutamate receptors (AMPARs). IgSF11 required PSD-95 binding for its excitatory synaptic localization. In addition, IgSF11 stabilized synaptic AMPARs, as determined by IgSF11 knockdown-induced suppression of AMPAR-mediated synaptic transmission and increased surface mobility of AMPARs, measured by high-throughput, single-molecule tracking. IgSF11 deletion in mice led to the suppression of AMPAR-mediated synaptic transmission in the dentate gyrus and long-term potentiation in the CA1 region of the hippocampus. IgSF11 did not regulate the functional characteristics of AMPARs, including desensitization, deactivation or recovery. These results suggest that IgSF11 regulates excitatory synaptic transmission and plasticity through its tripartite interactions with PSD-95 and AMPARs.


Subject(s)
Cell Adhesion Molecules, Neuronal/physiology , Cell Adhesion Molecules/physiology , Gene Expression Regulation/physiology , Hippocampus/metabolism , Immunoglobulins/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Neuronal Plasticity/physiology , Neurons/metabolism , Receptors, AMPA/metabolism , Synaptic Transmission/physiology , Animals , Cell Adhesion Molecules/metabolism , Cells, Cultured , Disks Large Homolog 4 Protein , Gene Knockdown Techniques , Guinea Pigs , Humans , Immunoglobulins/metabolism , Mice , Patch-Clamp Techniques , Rabbits , Rats , Rats, Sprague-Dawley
11.
Cell Rep ; 12(10): 1618-30, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26321637

ABSTRACT

Synaptic adhesion molecules regulate diverse aspects of synapse development and plasticity. SALM3 is a PSD-95-interacting synaptic adhesion molecule known to induce presynaptic differentiation in contacting axons, but little is known about its presynaptic receptors and in vivo functions. Here, we identify an interaction between SALM3 and LAR family receptor protein tyrosine phosphatases (LAR-RPTPs) that requires the mini-exon B splice insert in LAR-RPTPs. In addition, SALM3-dependent presynaptic differentiation requires all three types of LAR-RPTPs. SALM3 mutant (Salm3(-/-)) mice display markedly reduced excitatory synapse number but normal synaptic plasticity in the hippocampal CA1 region. Salm3(-/-) mice exhibit hypoactivity in both novel and familiar environments but perform normally in learning and memory tests administered. These results suggest that SALM3 regulates excitatory synapse development and locomotion behavior.


Subject(s)
Neural Cell Adhesion Molecules/physiology , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism , Synapses/physiology , Alternative Splicing , Animals , Cell Differentiation , Excitatory Postsynaptic Potentials , Exons , Hippocampus/cytology , Hippocampus/metabolism , Learning , Locomotion , Membrane Glycoproteins , Mice, Knockout , Nerve Tissue Proteins , Neuronal Plasticity , Protein Isoforms/physiology , Psychomotor Performance , RNA Splice Sites , Synaptic Transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...