Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
Small ; : e2402613, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850186

ABSTRACT

Methanol is not only a promising liquid hydrogen carrier but also an important feedstock chemical for chemical synthesis. Catalyst design is vital for enabling the reactions to occur under ambient conditions. This study reports a new class of van der Waals heterojunction photocatalyst, which is synthesized by hot-injection method, whereby carbon dots (CDs) are grown in situ on ZnSe nanoplatelets (NPLs), i.e., metal chalcogenide quantum wells. The resultant organic-inorganic hybrid nanoparticles, CD-NPLs, are able to perform methanol dehydrogenation through CH splitting. The heterostructure has enabled light-induced charge transfer from the CDs into the NPLs occurring on a sub-nanosecond timescale, with charges remaining separated across the CD-NPLs heterostructure for longer than 500 ns. This resulted in significantly heightened H2 production rate of 107 µmole·g-1·h-1 and enhanced photocurrent density up to 34 µA cm-2 at 1 V bias potential. EPR and NMR analyses confirmed the occurrence of α-CH splitting and CC coupling. The novel CD-based organic-inorganic semiconductor heterojunction is poised to enable the discovery of a host of new nano-hybrid photocatalysts with full tunability in the band structure, charge transfer, and divergent surface chemistry for guiding photoredox pathways and accelerating reaction rates.

2.
Chem Biodivers ; 21(6): e202400496, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38700369

ABSTRACT

Tuberculosis remains a global health threat, with increasing infection rates and mortality despite existing anti-TB drugs. The present work focuses on the research findings regarding the development and evaluation of thiadiazole-linked thiazole derivatives as potential anti-tuberculosis agents. We present the synthesis data and confirm the compound structures using spectroscopic techniques. The current study reports twelve thiazole-thiadiazole compounds (5 a-5 l) for their anti-tuberculosis and related bioactivities. This paper emphasizes compounds 5 g, 5 i, and 5 l, which exhibited promising MIC values, leading to further in silico and interaction analysis. Pharmacophore mapping data included in the present analysis identified tubercular ThyX as potential drug targets. The compounds were evaluated for anti-tubercular activity using standard methods, revealing significant MIC values, particularly compound 5 l, with the best MIC value of 7.1285 µg/ml. Compounds 5 g and 5 i also demonstrated moderate to good MIC values against M. tuberculosis (H37Ra). Structural inspection of the docked poses revealed interactions such as hydrogen bonds, halogen bonds, and interactions containing Pi electron cloud, shedding light on conserved interactions with residues like Arg 95, Cys 43, His 69, and Arg 87 from the tubercular ThyX enzyme.


Subject(s)
Antitubercular Agents , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium tuberculosis , Thiadiazoles , Thiazoles , Antitubercular Agents/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Thiadiazoles/chemistry , Thiadiazoles/pharmacology , Thiadiazoles/chemical synthesis , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , Mycobacterium tuberculosis/drug effects , Structure-Activity Relationship , Molecular Structure , Humans
3.
J Phys Chem A ; 128(18): 3587-3595, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38640443

ABSTRACT

The metal-ligand charge transfer (3MLCT) and phosphorescence-quenching metal-centered (3MC) states of the helicate and mesocate diastereoisomers of a double-stranded dinuclear polypyridylruthenium(II) complex have been investigated using ultrafast transient absorption spectroscopy. At 294 K, transient signals of the helicate decayed significantly slower than those of the mesocate, whereas at 77 K, no clear contrast in kinetics was observed. Contributions to excited-state decay from high-lying 3MLCT states were identified at both temperatures. Spectroscopic data (294 K) suggest that the 3MC state of the helicate lies above the 3MLCT and that the reverse is true for the mesocate; this was further validated by density functional theory calculations. The stabilization of the 3MC state relative to the 3MLCT state in the mesocate was explained by a reduction in ligand field strength due to distortion near the ligand bridge, which causes further deviation from octahedral geometry compared to the helicate. This work illustrates how minor structural differences can significantly influence excited state dynamics.

4.
J Card Fail ; 30(7): 952-957, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38458486

ABSTRACT

BACKGROUND: Cardiogenic shock (CS) is complicated by high mortality rates. Targeted temperature control (TTC) has been proposed as an adjunct therapy in CS. This study aims to examine the safety of TTC in patients presenting with CS. METHODS AND RESULTS: In this open-label, randomized controlled pilot trial, 20 patients with hemodynamic criteria for CS were assigned to standard of care plus TTC vs standard of care alone. The primary outcome was a composite safety outcome, including well-described complications of TTC. Secondary outcomes included mortality at 90 days, invasive hemodynamic and echocardiographic parameters, electrocardiographic measurements, and inotrope dosing. There were no significant differences in the composite analysis of prespecified safety outcomes (3 events in the TTC group vs 0 events in the control group; P = 0.24). Patients randomized to TTC demonstrated a statistically significant increase in cardiac index and cardiac power index compared to the control group at 48-96 hours after randomization (3.6 [3.1, 3.9] L/min/m2 vs 2.6 [2.5, 3.15] L/min/m2; P = 0.029 and 0.61 [0.55, 0.7] W/m2 vs 0.53 [0.435, 0.565] W/m2; P = 0.029, respectively). CONCLUSION: TTC may be a safe adjunct therapy for patients presenting with CS and may yield improvement in specific hemodynamic parameters.


Subject(s)
Hypothermia, Induced , Shock, Cardiogenic , Humans , Shock, Cardiogenic/therapy , Shock, Cardiogenic/physiopathology , Shock, Cardiogenic/mortality , Male , Female , Aged , Pilot Projects , Middle Aged , Hypothermia, Induced/methods , Treatment Outcome , Hemodynamics/physiology
5.
PLoS Genet ; 20(3): e1011192, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38517939

ABSTRACT

The HostSeq initiative recruited 10,059 Canadians infected with SARS-CoV-2 between March 2020 and March 2023, obtained clinical information on their disease experience and whole genome sequenced (WGS) their DNA. We analyzed the WGS data for genetic contributors to severe COVID-19 (considering 3,499 hospitalized cases and 4,975 non-hospitalized after quality control). We investigated the evidence for replication of loci reported by the International Host Genetics Initiative (HGI); analyzed the X chromosome; conducted rare variant gene-based analysis and polygenic risk score testing. Population stratification was adjusted for using meta-analysis across ancestry groups. We replicated two loci identified by the HGI for COVID-19 severity: the LZTFL1/SLC6A20 locus on chromosome 3 and the FOXP4 locus on chromosome 6 (the latter with a variant significant at P < 5E-8). We found novel significant associations with MRAS and WDR89 in gene-based analyses, and constructed a polygenic risk score that explained 1.01% of the variance in severe COVID-19. This study provides independent evidence confirming the robustness of previously identified COVID-19 severity loci by the HGI and identifies novel genes for further investigation.


Subject(s)
COVID-19 , North American People , Humans , COVID-19/genetics , SARS-CoV-2/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Canada/epidemiology , Genome-Wide Association Study , Membrane Transport Proteins , Forkhead Transcription Factors
6.
Nat Rev Chem ; 8(2): 136-151, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38273177

ABSTRACT

Exciton science sits at the intersection of chemical, optical and spin-based implementations of information processing, but using excitons to conduct logical operations remains relatively unexplored. Excitons encoding information could be read optically (photoexcitation-photoemission) or electrically (charge recombination-separation), travel through materials via exciton energy transfer, and interact with one another in stimuli-responsive molecular excitonic devices. Excitonic logic offers the potential to mediate electrical, optical and chemical information. Additionally, high-spin triplet and quintet (multi)excitons offer access to well defined spin states of relevance to magnetic field effects, classical spintronics and spin-based quantum information science. In this Roadmap, we propose a framework for developing excitonic computing based on singlet fission (SF) and triplet-triplet annihilation (TTA). Various molecular components capable of modulating SF/TTA for logical operations are suggested, including molecular photo-switching and multi-colour photoexcitation. We then outline a pathway for constructing excitonic logic devices, considering aspects of circuit assembly, logical operation synchronization, and exciton transport and amplification. Promising future directions and challenges are identified, and the potential for realizing excitonic computing in the near future is discussed.

7.
Osteoarthritis Cartilage ; 32(3): 266-280, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38035977

ABSTRACT

OBJECTIVE: Osteoarthritis (OA) is often accompanied by debilitating pain that is refractory to available analgesics due in part to the complexity of signaling molecules that drive OA pain and our inability to target these in parallel. Fatty acid binding protein 5 (FABP5) is a lipid chaperone that regulates inflammatory pain; however, its contribution to OA pain has not been characterized. DESIGN: This combined clinical and pre-clinical study utilized synovial tissues obtained from subjects with end-stage OA and rats with monoiodoacetate-induced OA. Cytokine and chemokine release from human synovia incubated with a selective FABP5 inhibitor was profiled with cytokine arrays and ELISA. Immunohistochemical analyses were conducted for FABP5 in human and rat synovium. The efficacy of FABP5 inhibitors on pain was assessed in OA rats using incapacitance as an outcome. RNA-seq was then performed to characterize the transcriptomic landscape of synovial gene expression in OA rats treated with FABP5 inhibitor or vehicle. RESULTS: FABP5 was expressed in human synovium and FABP5 inhibition reduced the secretion of pronociceptive cytokines (interleukin-6 [IL6], IL8) and chemokines (CCL2, CXCL1). In rats, FABP5 was upregulated in the OA synovium and its inhibition alleviated incapacitance. The transcriptome of the rat OA synovium exhibited >6000 differentially expressed genes, including the upregulation of numerous pronociceptive cytokines and chemokines. FABP5 inhibition blunted the upregulation of the majority of these pronociceptive mediators. CONCLUSIONS: FABP5 is expressed in the OA synovium and its inhibition suppresses pronociceptive signaling and pain, indicating that FABP5 inhibitors may constitute a novel class of analgesics to treat OA.


Subject(s)
Cytokines , Osteoarthritis , Humans , Rats , Animals , Cytokines/metabolism , Osteoarthritis/metabolism , Pain/metabolism , Chemokines/metabolism , Synovial Membrane/metabolism , Analgesics , Fatty Acid-Binding Proteins/genetics
8.
J Heart Lung Transplant ; 43(3): 420-431, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37844674

ABSTRACT

BACKGROUND: Left ventricular assist device (LVAD) support offers remodeling potential in some patients. Our goal was to use noninvasively derived pressure-volume (PV) loops to understand the effect of demographic and device variables on serial changes in cardiac function under pump support. METHODS: Thirty-two consecutive Medtronic HeartWare Ventricular Assist Device (HVAD) patients (mean 55.9 ± 12.3 years, 81.3% male) were prospectively recruited. Single-cycle ventricular pressure and volume were estimated using a validated algorithm. PV loops (n = 77) and corresponding cardiac chamber dynamics were derived at predefined postimplant timepoints (1, 3, 6 months). Changes in PV loop parameters sustained across the 6-month period were characterized using mixed-effects modeling. The influence of demographic and device variables on the observed changes was assessed. RESULTS: Across a 6-month period, the mean ventricular function parameters remained stable. Significant predictors of monthly improvement of stroke work include: lower pump speeds (2400 rpm vs 2500-2800 rpm) [0.0.051 mm Hg/liter/month (p = 0.001)], high pulsatility index (>1.0 vs <1.0) [0.052 mm Hg/liter/month (p = 0.012)], and ischemic cardiomyopathy indication for LVAD implantation (vs nonischemic) [0.0387 mm Hg/liter/month (p = 0.007)]. Various other cardiac chamber function parameters including cardiac power, peak systolic pressure, and LV elastance also showed improvements in these cohorts. CONCLUSIONS: Factors associated with improvement in ventricular energetics and hemodynamics under LVAD support can be determined with noninvasive PV loops. Understanding the basis of increasing ventricular load to optimize myocardial remodeling may prove valuable in selecting eligible recovery candidates.


Subject(s)
Heart-Assist Devices , Ventricular Function, Left , Humans , Male , Female , Myocardium , Heart Ventricles , Hemodynamics/physiology
9.
J Phys Chem Lett ; 14(36): 8000-8008, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37650733

ABSTRACT

Gating logical operations through high-lying electronic excited states presents opportunities for developing ultrafast, subnanometer computational devices. A lack of molecular systems with sufficiently long-lived higher excited states has hindered practical realization of such devices, but recent studies have reported intriguing photophysics from high-lying excited states of perylene. In this work, we use femtosecond spectroscopy supported by quantum chemical calculations to identify and quantify the relaxation dynamics of monomeric perylene's higher electronic excited states. The 21B2u state is accessed through single-photon absorption at 250 nm, while the optically dark 21Ag state is excited via the 11B3u state. Population of either state results in subpicosecond relaxation to the 11B3u state, and we quantify 21Ag and 21B2u state lifetimes of 340 and 530 fs, respectively. These lifetimes are significantly longer than the singlet fission time constant from the perylene 21B2u state, suggesting that the higher electronic states of perylene may be useful for gating logical operations.

10.
Angew Chem Int Ed Engl ; 62(24): e202303501, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37186332

ABSTRACT

We report a new composite material consisting of silver nanoparticles decorated with three-dimensional molecular organic cages based on light-absorbing porphyrins. The porphyrin cages serve to both stabilize the particles and allow diffusion and trapping of small molecules close to the metallic surface. Combining these two photoactive components results in a Fano-resonant interaction between the porphyrin Soret band and the nanoparticle-localised surface-plasmon resonance. Time-resolved spectroscopy revealed the silver nanoparticles transfer up to 37 % of their excited-state energy to the stabilising layer of porphyrin cages. These unusual photophysics cause a 2-fold current increase in photoelectrochemical water-splitting measurements. The composite structure provides a compelling proof of concept for advanced photosensitiser systems with intrinsic porosity for photocatalytic and sensing applications.

11.
J Chem Theory Comput ; 19(1): 271-292, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36490305

ABSTRACT

We present the first benchmarking study of nonadiabatic matrix coupling elements (NACMEs) calculated using different density functionals. Using the S1 → S0 transition in perylene solvated in toluene as a case study, we calculate the photophysical properties and corresponding rate constants for a variety of density functionals from each rung of Jacob's ladder. The singlet photoluminescence quantum yield (sPLQY) is taken as a measure of accuracy, measured experimentally here as 0.955. Important quantum chemical parameters such as geometries, absorption, emission, and adiabatic energies, NACMEs, Hessians, and transition dipole moments were calculated for each density functional basis set combination (data set) using density functional theory based multireference configuration interaction (DFT/MRCI) and compared to experiment where possible. We were able to derive simple relations between the TDDFT and DFT/MRCI photophysical properties; with semiempirical damping factors of ∼0.843 ± 0.017 and ∼0.954 ± 0.064 for TDDFT transition dipole moments and energies to DFT/MRCI level approximations, respectively. NACMEs were dominated by out-of-plane derivative components belonging to the center-most ring atoms with weaker contributions from perturbations along the transverse and longitudinal axes. Calculated theoretical spectra compared well to both experiment and literature, with fluorescence lifetimes between 7.1 and 12.5 ns, agreeing within a factor of 2 with experiment. Internal conversion (IC) rates were then calculated and were found to vary wildly between 106-1016 s-1 compared with an experimental rate of the order 107 s-1. Following further testing by mixing data sets, we found a strong dependence on the method used to obtain the Hessian. The 5 characterized data sets ranked in order of most promising are PBE0/def2-TZVP, ωB97XD/def2-TZVP, HCTH407/TZVP, PBE/TZVP, and PBE/def2-TZVP.

13.
PLoS One ; 17(12): e0278632, 2022.
Article in English | MEDLINE | ID: mdl-36473007

ABSTRACT

Total knee arthroplasty (TKA) is the final treatment option for patients with advanced knee osteoarthritis (OA). Unfortunately, TKA surgery is accompanied by acute postoperative pain that is more severe than arthroplasty performed in other joints. Elucidating the molecular mechanisms specific to post-TKA pain necessitates an animal model that replicates clinical TKA procedures, induces acute postoperative pain, and leads to complete functional recovery. Here, we present a new preclinical TKA model in rats and report on functional and behavioral outcomes indicative of pain, analgesic efficacy, serum cytokine levels, and dorsal root ganglia (DRG) transcriptomes during the acute postoperative period. Following TKA, rats exhibited marked deficits in weight bearing that persisted for 28 days. Home cage locomotion, rearing, and gait were similarly impacted and recovered by day 14. Cytokine levels were elevated on postoperative days one and/or two. Treatment with morphine, ketorolac, or their combination improved weight bearing while gabapentin lacked efficacy. When TKA was performed in rats with OA, similar functional deficits and comparable recovery time courses were observed. Analysis of DRG transcriptomes revealed upregulation of transcripts linked to multiple molecular pathways including inflammation, MAPK signaling, and cytokine signaling and production. In summary, we developed a clinically relevant rat TKA model characterized by resolution of pain and functional recovery within five weeks and with pain-associated behavioral deficits that are partially alleviated by clinically administered analgesics, mirroring the postoperative experience of TKA patients.


Subject(s)
Arthroplasty, Replacement, Knee , Rats , Animals , Arthroplasty, Replacement, Knee/adverse effects , Ganglia, Spinal , Pain, Postoperative/drug therapy , Pain, Postoperative/genetics , Cytokines/genetics
14.
Proc Natl Acad Sci U S A ; 119(52): e2207897119, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36534803

ABSTRACT

Mechanisms of emergence and divergence of protein folds pose central questions in biological sciences. Incremental mutation and stepwise adaptation explain relationships between topologically similar protein folds. However, the universe of folds is diverse and riotous, suggesting more potent and creative forces are at play. Sequence and structure similarity are observed between distinct folds, indicating that proteins with distinct folds may share common ancestry. We found evidence of common ancestry between three distinct ß-barrel folds: Scr kinase family homology (SH3), oligonucleotide/oligosaccharide-binding (OB), and cradle loop barrel (CLB). The data suggest a mechanism of fold evolution that interconverts SH3, OB, and CLB. This mechanism, which we call creative destruction, can be generalized to explain many examples of fold evolution including circular permutation. In creative destruction, an open reading frame duplicates or otherwise merges with another to produce a fused polypeptide. A merger forces two ancestral domains into a new sequence and spatial context. The fused polypeptide can explore folding landscapes that are inaccessible to either of the independent ancestral domains. However, the folding landscapes of the fused polypeptide are not fully independent of those of the ancestral domains. Creative destruction is thus partially conservative; a daughter fold inherits some motifs from ancestral folds. After merger and refolding, adaptive processes such as mutation and loss of extraneous segments optimize the new daughter fold. This model has application in disease states characterized by genetic instability. Fused proteins observed in cancer cells are likely to experience remodeled folding landscapes and realize altered folds, conferring new or altered functions.


Subject(s)
Protein Folding , Proteins , Proteins/chemistry , Oligonucleotides/metabolism , Biophysical Phenomena , Mutation
15.
J Clin Exp Hepatol ; 12(5): 1328-1332, 2022.
Article in English | MEDLINE | ID: mdl-36157151

ABSTRACT

Background: Recurrent or de novo nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are common after liver transplantation (LT) and may be associated with rapid progression to fibrosis; however, there is limited data in this regard after living donor liver transplantation (LDLT). Material and methods: This is a retrospective study at a high volume LDLT center of all liver biopsies performed in patients with post-transplant NAFLD diagnosed on ultrasound of the abdomen. Liver biopsy was indicated for raised transaminases and/or high liver stiffness on TE. The association between these prebiopsy parameters and inflammation and fibrosis on histology was analyzed. Data are shown as mean ± standard deviation or median (25-75 interquartile range). Results: The study cohort consisted of 31 males and 3 females, aged 43 ± 10 years. The LT to liver biopsy interval was 44 (28-68) months. The prebiopsy AST and ALT were 71 (38-119) and 66 (50-156), respectively. The histology suggested no nonalcoholic steatohepatitis (NASH) in 7 (20%), borderline NASH in 15 (44%), and NASH in 12 (35%) patients. A total of 15 patients (44%) had stage 1 or stage 2 fibrosis. The proportion of patients having fibrosis was significantly higher in patients with NASH (83%) compared to patients with borderline NASH (33%) or no NASH (none had fibrosis, P = 0.001). Among 18 patients who underwent TE (on FibroScan), liver stiffness was significantly higher in patients with fibrosis [18.1 (9.7-22.5)] than in those without fibrosis [9.7 (4.0-12.7); P = 0.043]. Conclusion: Over a third of the LDLT recipients with post-transplant NAFLD developed NASH, and nearly half, borderline NASH 3-5 years after transplant. Most with established NASH also had fibrosis on histology. Prevention of risk factors and early diagnosis is warranted in these patients.

16.
Cureus ; 14(7): e26624, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35949735

ABSTRACT

Acute hemiplegia is a common neurological presentation that usually occurs due to a cerebrovascular accident. A similar presentation may also be seen in several other conditions such as postictal (Todd's) paralysis, hemiplegic migraine, brain abscess, and extradural or subdural hemorrhage. We present the case of a 32-year-old South Indian female who was brought to the emergency department with acute hemiplegia and decreased responsiveness for one day. She was provisionally diagnosed with an ischemic stroke at presentation; however, contrast-enhanced computed tomography (CECT) of the brain with CT angiography and venography revealed no focal lesions or filling defects. CSF examination showed gram-positive cocci in pairs, concerning brain abscess. Magnetic resonance imaging (MRI) of the brain was suggestive of multiple evolving abscesses in the right frontal and parietal lobes. Her hemiplegia was attributed to the abscess, and she was given six weeks of intravenous (IV) antibiotics, after which she recovered completely. Maintaining a high index of clinical suspicion enabled the correct diagnosis in a patient who did not have any typical features of acute meningitis.

18.
Dalton Trans ; 51(3): 1056-1069, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-34935828

ABSTRACT

Fused-ring pyrazoles offer a versatile platform for derivitization to give finely tuned and functional ligands in coordination assemblies. Here, we explore the pyrazolo[4,3-b]pyridine (HL1) and pyrazolo[3,4-c]pyridine (HL2) backbones and their N-substituted derivatives, using their coordination chemistry with zinc(II) in the solid state and in solution to examine the steric and electronic effects of varying their substitution pattern. The parent heterocycles HL1 and HL2 both generate robust and permanently porous isomeric MOFs on reaction with zinc and a dicarboxylate co-ligand. The subtle geometric change offered by the position of the backbone pyridyl nitrogen atom leads to substantial changes in the pore size and total pore volume, which is reflected in both their surface areas and CO2 uptake performance. Both materials are also unusually resilient to atmospheric water vapour by virtue of the strong metal-azolate bonding. The isomeric chelating ligands L3-L6, generated by N-arylation of the parent heterocycles with a 2-pyridyl group, each coordinate to zinc to give either mononuclear or polymeric coordination compounds depending on the involvement of the backbone pyridine nitrogen atom. While crystal packing influences based on the steric preferences of the ligands are dominant in the crystalline phase, fluorescence spectroscopy is used to show that the 2H isomers L4 and L6 show distinct coordination behaviour to the 1H isomers L3 and L5, forming competing [ML] and [ML2] species in soution. The first stability constant for L6 with zinc(II) is an order of magnitude larger than for the other three ligands, suggesting an improved binding strength based on the electron configuration in this isomer. These results show that careful control of remote substitution on fused pyrazole ligands can lead to substantial improvements in the stability of the resulting complexes, with consequences for the design of stable coordination assemblies containining labile metal ions.

19.
BMJ Case Rep ; 14(11)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34782373

ABSTRACT

In India, bee stings are very common, seen mainly in farmers and honey collectors. Usually, it presents with local reactions and anaphylaxis. It rarely requires urgent hospitalisation. Other major complications seen are acute renal failure, intravascular coagulation, rhabdomyolysis and acute pulmonary oedema. Stroke as a presentation is uncommon. We report a case of a 45-year-old man presenting with right-sided hemiplegia and aphasia due to multiple bee stings. Diffusion MRI showed left middle cerebral artery territory hyperacute infarct.


Subject(s)
Anaphylaxis , Bee Venoms , Insect Bites and Stings , Stroke , Animals , Bees , Diffusion Magnetic Resonance Imaging , Humans , Infarction, Middle Cerebral Artery/diagnostic imaging , Infarction, Middle Cerebral Artery/etiology , Insect Bites and Stings/complications , Stroke/diagnostic imaging , Stroke/etiology
20.
Front Neurol ; 12: 713794, 2021.
Article in English | MEDLINE | ID: mdl-34497578

ABSTRACT

Accurate identification of seizure activity, both clinical and subclinical, has important implications in the management of epilepsy. Accurate recognition of seizure activity is essential for diagnostic, management and forecasting purposes, but patient-reported seizures have been shown to be unreliable. Earlier work has revealed accurate capture of electrographic seizures and forecasting is possible with an implantable intracranial device, but less invasive electroencephalography (EEG) recording systems would be optimal. Here, we present preliminary results of seizure detection and forecasting with a minimally invasive sub-scalp device that continuously records EEG. Five participants with refractory epilepsy who experience at least two clinically identifiable seizures monthly have been implanted with sub-scalp devices (Minder®), providing two channels of data from both hemispheres of the brain. Data is continuously captured via a behind-the-ear system, which also powers the device, and transferred wirelessly to a mobile phone, from where it is accessible remotely via cloud storage. EEG recordings from the sub-scalp device were compared to data recorded from a conventional system during a 1-week ambulatory video-EEG monitoring session. Suspect epileptiform activity (EA) was detected using machine learning algorithms and reviewed by trained neurophysiologists. Seizure forecasting was demonstrated retrospectively by utilizing cycles in EA and previous seizure times. The procedures and devices were well-tolerated and no significant complications have been reported. Seizures were accurately identified on the sub-scalp system, as visually confirmed by periods of concurrent conventional scalp EEG recordings. The data acquired also allowed seizure forecasting to be successfully undertaken. The area under the receiver operating characteristic curve (AUC score) achieved (0.88), which is comparable to the best score in recent, state-of-the-art forecasting work using intracranial EEG.

SELECTION OF CITATIONS
SEARCH DETAIL
...