Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 295: 122518, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-36996613

ABSTRACT

[QA- - QA] Fourier transform infrared difference spectra have previously been obtained using purple bacterial reaction centers from Rhodobacter sphaeroides with unlabeled, 18O and 13C isotope labeled phylloquinone (PhQ, also known as vitamin K1) incorporated into the QA protein binding site (Breton, (1997), Proc. Natl. Acad. Sci. USA94 11318-11323). The nature of the bands in these spectra and the isotope induced band shifts are poorly understood, especially for the phyllosemiquinone anion (PhQ-) state. To aid in the interpretation of the bands in these experimental spectra, ONIOM type QM/MM vibrational frequency calculations were undertaken. Calculations were also undertaken for PhQ- in solution. Surprisingly, both sets of calculated spectra are similar and agree well with the experimental spectra. This similarity suggests pigment-protein interactions do not perturb the electronic structure of the semiquinone in the QA binding site. This is not found to be the case for the neutral PhQ species in the same protein binding site. PhQ also occupies the A1 protein binding site in photosystem I, and the vibrational properties of PhQ- in the QA and A1 binding sites are compared and shown to exhibit considerable differences. These differences probably arise because of changes in the degree of asymmetry of hydrogen bonding of PhQ- in the A1 and QA binding sites.


Subject(s)
Photosystem I Protein Complex , Vitamin K 1 , Protein Binding , Spectroscopy, Fourier Transform Infrared , Binding Sites , Photosystem I Protein Complex/chemistry , Vitamin K 1/chemistry , Vitamin K 1/metabolism , Isotopes/metabolism
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 268: 120674, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-34894562

ABSTRACT

In recent years there has been interest in incorporating substituted 1,4-naphthoquinones (NQs) into the A1 binding site in photosystem I (PSI) photosynthetic protein complexes. This interest in part stems from the considerably altered bioenergetics of electron transfer that occur in PSI with such substitutions. Time resolved FTIR studies of PSI complexes with disubstituted NQs incorporated have and currently are being undertaken, and with this in mind it is worth considering FTIR absorption spectra of these disubstituted NQs in solution. Here we present FTIR absorbance spectra for 2-bromo-3-methyl-1,4-naphthoquinone (BrMeNQ), 2-chloromethyl-3-methyl-1,4-naphthoquinone (CMMeNQ) and 2-ethylthio-3-methyl-1,4-naphthoquinone (ETMeNQ) in tetrahydrofuran (THF). The FTIR spectra of these di-substituted naphthoquinones (NQs) were compared to FTIR spectra of 2-methyl-3-phytyl-1,4-naphthoquinone [phylloquinone (PhQ)], 2,3-dimethyl-1,4-naphthoquinone (DMNQ), and 2-methyl-1,4-naphthoquinone (2MNQ). To aid in the assignment of bands in the experimental spectra, density functional theory (DFT) based vibrational frequency calculations for all the substituted NQs in solution were undertaken. The calculated and experimental spectra agree well. By calculating normal mode potential energy distributions, unambiguous quantitative band assignments were made. The calculated and experimental spectra together make predictions about what may be observable in time resolved FTIR difference spectra obtained using PSI with the different NQs incorporated. Time resolved FTIR difference spectra are presented that support these predictions.


Subject(s)
Naphthoquinones , Binding Sites , Electron Transport , Photosystem I Protein Complex , Spectroscopy, Fourier Transform Infrared
3.
Biochim Biophys Acta Bioenerg ; 1862(4): 148366, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33385342

ABSTRACT

Time resolved FTIR difference spectroscopy (DS) has been used to study photosystem I (PSI) with the disubstituted 1,4-naphthoquinones acequinocyl (AcQ) and lapachol (Lpc) incorporated into the A1 binding site. AcQ is a 2-acetoxy-3-dodecyl-1,4-naphthoquinone, Lpc is a 2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone. To assess whether the experimental spectra are specific to different orientations of the quinone and their substitutions ONIOM-type QM/MM vibrational frequency calculations were undertaken for various orientations of the pigments and side-chain conformations in the A1 binding site. Comparison of calculated and experimental spectra for the reduced species (semiquinone anion) suggests that the orientation for the naphthoquinone ring in the binding site and specific side-chain conformations can be identified based on the spectra. In native PSI phylloquinone (PhQ) in the A1 binding site binds with its phytyl chain ortho to the hydrogen bonded carbonyl group. This is not found to be the case for the hydrocarbon tail of AcQ, which is meta to the H-bonded carbonyl group. In contrast, Lpc in PSI binds with its hydrocarbon tail also ortho to the H-bonded carbonyl group. Furthermore, comparison of calculated and experimental spectra indicates which conformations the acetoxy group of AcQ and the hydroxy group of Lpc adopt in the A1 binding site.


Subject(s)
Bacterial Proteins/chemistry , Cyanobacteria/chemistry , Photosystem I Protein Complex/chemistry , Pigments, Biological/chemistry , Binding Sites , Spectroscopy, Fourier Transform Infrared
4.
Biochim Biophys Acta Bioenerg ; 1860(9): 699-707, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31306624

ABSTRACT

Time-resolved (P700+A1- - P700A1) FTIR difference spectra have been obtained using photosystem I (PSI) particles with several different quinones incorporated into the A1 protein binding site. Difference spectra were obtained for PSI with unlabeled and 18O labeled phylloquinone (2-methyl-3-phytyl-1,4-naphthoquinone) and 2-methyl-1,4-naphthaquinone (2MNQ) incorporated, and for PSI with unlabeled 2,3-dimethyl-1,4-naphthoquinone (DMNQ) incorporated. (18O - 16O), (2MNQ - PhQ) and (DMNQ - PhQ) FTIR double difference spectra were constructed from the difference spectra. These double difference spectra allow one to more easily distinguish protein and pigment bands in convoluted difference spectra. To further aid in the interpretation of the difference spectra, particularly the spectra associated with the semiquinones, we have used two-layer ONIOM methods to calculate corresponding difference and double difference spectra. In all cases, the experimental and calculated double difference spectra are in excellent agreement. In previous two and three-layer ONIOM calculations it was not possible to adequately simulate multiple difference and double difference spectra. So, the computational approach outlined here is an improvement over previous calculations. It is shown that the calculated spectra can vary depending on the details of the molecular model that is used. Specifically, a molecular model that includes several water molecules that are near the incorporated semiquinones is required.


Subject(s)
Photosystem I Protein Complex/metabolism , Quinones/chemistry , Synechococcus/metabolism , Binding Sites , Electron Transport , Models, Molecular , Photosystem I Protein Complex/chemistry , Protein Binding , Protein Conformation , Protein Domains , Vibration
5.
Biochim Biophys Acta Bioenerg ; 1860(6): 452-460, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30986391

ABSTRACT

(P700+ - P700) Fourier transform visible and infrared difference spectra (DS) have been obtained using photosystem I (PSI) complexes isolated from cells of Fischerella thermalis PCC 7521 grown under white light (WL) or far-red light (FRL). PSI from cells grown under FRL (FRL-PSI) contain ~8 chlorophyll f (Chl f) molecules (Shen et al., Photosynth. Res. Jan. 2019). Both the visible and infrared DS indicate that neither the PA or PB pigments of P700 are Chl f molecules, but do support the conclusion that at least one of the A-1 cofactors is a Chl f molecule. The FTIR DS indicate that the hydrogen bond to the 131-keto CO group of the PA pigment of P700 is weakened in FRL-PSI, as might be expected given that the proteins that bind the P700 pigments are substantially different in FRL-PSI (Gan et al., Science 345, 1312-1317, 2014). The FTIR DS obtained using FRL-PSI display a band at 1664 cm-1 that is assigned (based on density functional theory calculations) to the 21-formyl CO group of Chl f, that upshifts 5 cm-1 upon P700+ formation. This is much less than expected for a cation-induced upshift, indicating that the Chl f molecule is not one of the pigments of P700. In WL-PSI the A-1 cofactor is a Chl a molecule with 131-keto and 133-methylester CO mode vibrations at 1696 and 1750 cm-1, respectively. In FRL-PSI the A-1 cofactor is a Chl f molecule with 131-keto and 133-methylester CO mode vibrations at 1702 and 1754 cm-1, respectively.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/radiation effects , Chlorophyll/analogs & derivatives , Cyanobacteria/chemistry , Light , Photosystem I Protein Complex/chemistry , Bacterial Proteins/metabolism , Chlorophyll/chemistry , Chlorophyll/metabolism , Cyanobacteria/metabolism , Hydrogen Bonding , Models, Molecular , Molecular Structure , Photosynthesis , Photosystem I Protein Complex/metabolism , Spectrophotometry
6.
Biochim Biophys Acta Bioenerg ; 1858(9): 804-813, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28669508

ABSTRACT

Time-resolved step-scan FTIR difference spectroscopy at low temperature (77 K) has been used to study photosystem I particles with phylloquinone (2-methyl-3-phytyl-1,4-naphthaquinone) and menadione (2-methyl-1,4-naphthaquinone) incorporated into the A1 binding site. By subtracting spectra for PSI with phylloquinone incorporated from spectra for PSI with menadione incorporated a (menadione - phylloquinone) double difference spectrum was constructed. In the double difference spectrum bands associated with protein vibrational modes effectively cancel, and the bands in the spectrum are primarily associated with the neutral and reduced states of the two quinones in the A1 binding site. To aid in the assignment of bands in the experimental double difference spectrum, a double difference spectrum was calculated using three-layer ONIOM methods. The calculated and experimental spectra agree well, allowing unambiguous band assignments to be made. The ONIOM calculations show that both quinones in the A1 binding site are similarly oriented, with only a single hydrogen bond between the C4=O quinone carbonyl group and the backbone NH group of a leucine residue. For the semi-quinone species, but not for the neutral species, this hydrogen bond appears to be very strong. Finally, we have for the first time been able to unmask and identify infrared difference bands associated with neutral naphthoquinone species occupying the A1 binding site in PSI.


Subject(s)
Photosystem I Protein Complex/chemistry , Quinones/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Vitamin K 1/metabolism , Binding Sites , Models, Molecular , Photosystem I Protein Complex/metabolism , Protein Binding , Protein Conformation , Synechocystis/genetics , Synechocystis/metabolism , Vitamin K 2/metabolism
7.
J Comput Biol ; 23(2): 80-89, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26675082

ABSTRACT

The p53 protein is a stress response protein that functions primarily as a tetrameric transcription factor. A tumor suppressor p53 binds to a specific DNA sequence and transactivates target genes, leading to cell cycle apoptosis. Encoded by the human gene TP53, p53 is a stress response protein that functions primarily as a tetrameric transcription factor. This gene regulates a large number of genes in response to a variety of cellular functions, including oncogene activation and DNA damage. Mutations in p53 are common in human cancer types. Herein we mutate a wild-type p53, 1TSR with four of its mutated proteins. The energy for the wild-type and mutated proteins is calculated by using molecular dynamics simulations along with simulated annealing. Our results show significant differences in energy between hotspot mutations and the wild type. Based on the findings, we investigate the correlation between molar masses of the target residue and the relative energy with respect to the wild type. Our results indicate that the relative energy changes play a pivotal role in bioactivity, in conformity with observations in the rate of mutation in biology.

SELECTION OF CITATIONS
SEARCH DETAIL
...