Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Contam Hydrol ; 128(1-4): 71-82, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22192346

ABSTRACT

Soil vapor extraction (SVE) is typically effective for removal of volatile contaminants from higher-permeability portions of the vadose zone. However, contamination in lower-permeability zones can persist due to mass transfer processes that limit the removal effectiveness. After SVE has been operated for a period of time and the remaining contamination is primarily located in lower-permeability zones, the remedy performance needs to be evaluated to determine whether the SVE system should be optimized, terminated, or transitioned to another technology to replace or augment SVE. Numerical modeling of vapor-phase contaminant transport was used to investigate the correlation between measured vapor-phase mass discharge, MF(r), from a persistent, vadose-zone contaminant source and the resulting groundwater contaminant concentrations. This relationship was shown to be linear, and was used to directly assess SVE remediation progress over time and to determine the level of remediation in the vadose zone necessary to protect groundwater. Although site properties and source characteristics must be specified to establish a unique relation between MF(r) and the groundwater contaminant concentration, this correlation provides insight into SVE performance and support for decisions to optimize or terminate the SVE operation or to transition to another type of treatment.


Subject(s)
Carbon Tetrachloride/chemistry , Environmental Restoration and Remediation/methods , Groundwater/chemistry , Models, Chemical , Water Pollutants, Chemical/chemistry , Computer Simulation , Washington
2.
Ground Water Monit Remediat ; 30(3): 57-64, 2010.
Article in English | MEDLINE | ID: mdl-23516336

ABSTRACT

Methods are developed to use data collected during cyclic operation of soil vapor extraction (SVE) systems to help characterize the magnitudes and timescales of mass flux associated with vadose zone contaminant sources. Operational data collected at the Department of Energy's Hanford site are used to illustrate the use of such data. An analysis was conducted of carbon tetrachloride vapor concentrations collected during and between SVE operations. The objective of the analysis was to evaluate changes in concentrations measured during periods of operation and non-operation of SVE, with a focus on quantifying temporal dynamics of the vadose zone contaminant mass flux, and associated source strength. Three mass-flux terms, representing mass flux during the initial period of a SVE cycle, during the asymptotic period of a cycle, and during the rebound period, were calculated and compared. It was shown that it is possible to use the data to estimate time frames for effective operation of an SVE system if a sufficient set of historical cyclic operational data exists. This information could then be used to help evaluate changes in SVE operations, including system closure. The mass-flux data would also be useful for risk assessments of the impact of vadose-zone sources on groundwater contamination or vapor intrusion.

SELECTION OF CITATIONS
SEARCH DETAIL