Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cheminform ; 4(1): 12, 2012 Jul 06.
Article in English | MEDLINE | ID: mdl-22769057

ABSTRACT

BACKGROUND: Analysis and visualization of large collections of molecules is one of the most frequent challenges cheminformatics experts in pharmaceutical industry are facing. Various sophisticated methods are available to perform this task, including clustering, dimensionality reduction or scaffold frequency analysis. In any case, however, viewing and analyzing large tables with molecular structures is necessary. We present a new visualization technique, providing basic information about the composition of molecular data sets at a single glance. SUMMARY: A method is presented here allowing visual representation of the most common structural features of chemical databases in a form of a cloud diagram. The frequency of molecules containing particular substructure is indicated by the size of respective structural image. The method is useful to quickly perceive the most prominent structural features present in the data set. This approach was inspired by popular word cloud diagrams that are used to visualize textual information in a compact form. Therefore we call this approach "Molecule Cloud". The method also supports visualization of additional information, for example biological activity of molecules containing this scaffold or the protein target class typical for particular scaffolds, by color coding. Detailed description of the algorithm is provided, allowing easy implementation of the method by any cheminformatics toolkit. The layout algorithm is available as open source Java code. CONCLUSIONS: Visualization of large molecular data sets using the Molecule Cloud approach allows scientists to get information about the composition of molecular databases and their most frequent structural features easily. The method may be used in the areas where analysis of large molecular collections is needed, for example processing of high throughput screening results, virtual screening or compound purchasing. Several example visualizations of large data sets, including PubChem, ChEMBL and ZINC databases using the Molecule Cloud diagrams are provided.

2.
J Chem Inf Model ; 46(5): 1924-36, 2006.
Article in English | MEDLINE | ID: mdl-16995723

ABSTRACT

The quality of QSAR (Quantitative Structure-Activity Relationships) predictions depends on a large number of factors including the descriptor set, the statistical method, and the data sets used. Here we study the quality of QSAR predictions mainly as a function of the data set and descriptor type using partial least squares as the statistical modeling method. The study makes use of the fact that we have access to a large number of data sets and to a variety of different QSAR descriptors. The main conclusions are that the quality of the predictions depends both on the data set and the descriptor used. The quality of the predictions correlates positively with the size of the data set and the range of biological activities. There is no clear dependence of the quality of the predictions on the complexity of the data set. All of the descriptors tested produced useful predictions for some of the data sets. None of the descriptors is best for all data sets; it is therefore necessary to test in each individual case, which descriptor produces the best model. In our tests, 2D fragment based descriptors usually performed better than simpler descriptors based on augmented atom types. Possible reasons for these observations are discussed.


Subject(s)
Quantitative Structure-Activity Relationship , Models, Statistical , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...