Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cereb Cortex ; 34(1)2024 01 14.
Article in English | MEDLINE | ID: mdl-38112627

ABSTRACT

Explicit logical reasoning, like transitive inference, is a hallmark of human intelligence. This study investigated cortical oscillations and their interactions in transitive inference with EEG. Participants viewed premises describing abstract relations among items. They accurately recalled the relationship between old pairs of items, effectively inferred the relationship between new pairs of items, and discriminated between true and false relationships for new pairs. First, theta (4-7 Hz) and alpha oscillations (8-15 Hz) had distinct functional roles. Frontal theta oscillations distinguished between new and old pairs, reflecting the inference of new information. Parietal alpha oscillations changed with serial position and symbolic distance of the pairs, representing the underlying relational structure. Frontal alpha oscillations distinguished between true and false pairs, linking the new information with the underlying relational structure. Second, theta and alpha oscillations interacted through cross-frequency and inter-regional phase synchronization. Frontal theta-alpha 1:2 phase locking appeared to coordinate spectrally diverse neural activity, enhanced for new versus old pairs and true versus false pairs. Alpha-band frontal-parietal phase coherence appeared to coordinate anatomically distributed neural activity, enhanced for new versus old pairs and false versus true pairs. It suggests that cross-frequency and inter-regional phase synchronization among theta and alpha oscillations supports human transitive inference.


Subject(s)
Mental Recall , Problem Solving , Humans , Electroencephalography , Cortical Synchronization
2.
J Pharm Biomed Anal ; 53(4): 973-82, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20650591

ABSTRACT

Traditional chiral chromatographic separation method development is time consuming even for an experienced chromatographer. This paper describes the application of computer software ACD Lab to facilitate the development of chiral separation for the quantitation of eszopiclone using LC-MS/MS technology. Assisted by ACD/Chrom Manager and LC Simulator software, the optimal chiral chromatographic development was completed within hours. The baseline chiral separation was achieved with a total cycle time of 3 min. For sample extraction method development, a Waters Oasis Sorbent Selection Plate containing four different sorbents was utilized. Optimal conditions were determined using a single plate under various load, wash and elution conditions. This was followed by a GLP validation which demonstrated excellent intra- and inter-day accuracy and precision for the quantitation of eszopiclone in human plasma at 1.00-100 ng/mL range using LC/MS/MS technology. This method was utilized to support multiple clinic bioequivalence studies.


Subject(s)
Azabicyclo Compounds/blood , Chromatography, Liquid/methods , Hypnotics and Sedatives/blood , Piperazines/blood , Tandem Mass Spectrometry/methods , Azabicyclo Compounds/pharmacokinetics , Eszopiclone , Humans , Piperazines/pharmacokinetics , Quality Control , Solid Phase Extraction , Stereoisomerism , Tablets
SELECTION OF CITATIONS
SEARCH DETAIL
...