Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Chaos ; 30(11): 113138, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33261332

ABSTRACT

A single-species reaction-diffusion model is used for studying the coexistence of multiple stable steady states. In these systems, one can define a potential-like functional that contains the stability properties of the states, and the essentials of the motion of wave fronts in one- and two-dimensional space. Using a quintic polynomial for the reaction term and taking advantage of the well-known butterfly bifurcation, we analyze the different scenarios involving the competition of two and three stable steady states, based on equipotential curves and points in parameter space. The predicted behaviors, including a front splitting instability, are contrasted to numerical integrations of reaction fronts in two dimensions.

SELECTION OF CITATIONS
SEARCH DETAIL