Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 239
Filter
1.
Dalton Trans ; 53(25): 10753, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38836862

ABSTRACT

Correction for 'Molybdenum-maltolate as a molybdopterin mimic for bioinspired oxidation reaction' by Swapnil S. Pawar et al., Dalton Trans., 2024, 53, 5770-5774, https://doi.org/10.1039/D3DT04296K.

2.
J Clin Invest ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713514

ABSTRACT

Pancreatic ß-cell dysfunction is a key feature of type 2 diabetes, and novel regulators of insulin secretion are desirable. Here we report that the succinate receptor (SUCNR1) is expressed in ß-cells and is up-regulated in hyperglycemic states in mice and humans. We found that succinate acts as a hormone-like metabolite and stimulates insulin secretion via a SUCNR1-Gq-PKC-dependent mechanism in human ß-cells. Mice with ß-cell-specific Sucnr1 deficiency exhibit impaired glucose tolerance and insulin secretion on a high-fat diet, indicating that SUCNR1 is essential for preserving insulin secretion in diet-induced insulin resistance. Patients with impaired glucose tolerance show an enhanced nutritional-related succinate response, which correlates with the potentiation of insulin secretion during intravenous glucose administration. These data demonstrate that the succinate/SUCNR1 axis is activated by high glucose and identify a GPCR-mediated amplifying pathway for insulin secretion relevant to the hyperinsulinemia of prediabetic states.

3.
Chem Asian J ; 19(9): e202400144, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38487959

ABSTRACT

A short monodisperse poly(ethylene glycol) (PEG) and a neutral organic rotamer conjugate TEG-BTA-2 amphiphile was designed for the construction of a stimuli-responsive switchable self-assembled structure for drug encapsulation by noncovalent interaction and targeted controlled delivery. A short PEG, tetraethylene glycol (TEG) was covalently attached with a neutral organic rotamer benzothiazole dye (BTA-2) affording the neutral TEG-BTA-2 (<500 D). The TEG-BTA-2 is self-assembled into a microsphere in an aqueous medium, but remarkably undergoes morphology change switching to a rice-like microcapsule for curcumin encapsulation. Curcumin-loaded microcapsules were stable in an aqueous solution, however, were noticed disintegrating upon the addition of BSA protein. This is possibly due to an interaction with BSA protein leading to a protein affinity-controlled curcumin release in a neutral PBS buffer. Moreover, cell internalization of the neutral amphiphile TEG-BTA-2 into A549 cells was observed by fluorescence microscopy, providing an opportunity for application as a molecular vehicle for targeted drug delivery and monitoring.


Subject(s)
Drug Delivery Systems , Capsules/chemistry , Polyethylene Glycols/chemistry , Drug Delivery Systems/methods , Benzothiazoles/chemistry , Humans , Cell Line, Tumor , Animals , Cattle , Serum Albumin, Bovine/chemistry , Cell Survival , Hydrophobic and Hydrophilic Interactions
4.
Dalton Trans ; 53(13): 5770-5774, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38488043

ABSTRACT

A novel cis-dioxomolybdenum(VI)-maltolate [MoO2(Mal)2] (1) is prepared as a stable molybdopterin model for the biomimetic catalysis of the oxidation of hypoxanthine in acetonitrile-water at room temperature. Compound 1 efficiently catalyzes the oxidation reaction of toluene, diphenylmethane, and styrene. Cyto- and oral-toxicity studies suggest its tremendous potential for application as a molybdenum supplement.

5.
Sci Transl Med ; 16(735): eadk1867, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38381847

ABSTRACT

Snakebite envenoming is a major global public health concern for which improved therapies are urgently needed. The antigenic diversity present in snake venom toxins from various species presents a considerable challenge to the development of a universal antivenom. Here, we used a synthetic human antibody library to find and develop an antibody that neutralizes long-chain three-finger α-neurotoxins produced by numerous medically relevant snakes. Our antibody bound diverse toxin variants with high affinity, blocked toxin binding to the nicotinic acetylcholine receptor in vitro, and protected mice from lethal venom challenge. Structural analysis of the antibody-toxin complex revealed a binding mode that mimics the receptor-toxin interaction. The overall workflow presented is generalizable for the development of antibodies that target conserved epitopes among antigenically diverse targets, and it offers a promising framework for the creation of a monoclonal antibody-based universal antivenom to treat snakebite envenoming.


Subject(s)
Antivenins , Snake Bites , Humans , Animals , Mice , Antivenins/chemistry , Snake Bites/drug therapy , Neurotoxins/toxicity , Broadly Neutralizing Antibodies , Snake Venoms
6.
Nat Cell Biol ; 26(3): 421-437, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38409327

ABSTRACT

Type 1 diabetes (T1D) is characterized by the destruction of pancreatic ß-cells. Several observations have renewed the interest in ß-cell RNA sensors and editors. Here, we report that N6-methyladenosine (m6A) is an adaptive ß-cell safeguard mechanism that controls the amplitude and duration of the antiviral innate immune response at T1D onset. m6A writer methyltransferase 3 (METTL3) levels increase drastically in ß-cells at T1D onset but rapidly decline with disease progression. m6A sequencing revealed the m6A hypermethylation of several key innate immune mediators, including OAS1, OAS2, OAS3 and ADAR1 in human islets and EndoC-ßH1 cells at T1D onset. METTL3 silencing enhanced 2'-5'-oligoadenylate synthetase levels by increasing its mRNA stability. Consistently, in vivo gene therapy to prolong Mettl3 overexpression specifically in ß-cells delayed diabetes progression in the non-obese diabetic mouse model of T1D. Mechanistically, the accumulation of reactive oxygen species blocked upregulation of METTL3 in response to cytokines, while physiological levels of nitric oxide enhanced METTL3 levels and activity. Furthermore, we report that the cysteines in position C276 and C326 in the zinc finger domains of the METTL3 protein are sensitive to S-nitrosylation and are important to the METTL3-mediated regulation of oligoadenylate synthase mRNA stability in human ß-cells. Collectively, we report that m6A regulates the innate immune response at the ß-cell level during the onset of T1D in humans.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Animals , Humans , Mice , Adenosine Deaminase/metabolism , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Immunity, Innate , Insulin-Secreting Cells/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Oxidation-Reduction
8.
Sci Rep ; 13(1): 21662, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38066189

ABSTRACT

Snakebite envenoming is a global public health issue that causes significant morbidity and mortality, particularly in low-income regions of the world. The clinical manifestations of envenomings vary depending on the snake's venom, with paralysis, haemorrhage, and necrosis being the most common and medically relevant effects. To assess the efficacy of antivenoms against dermonecrosis, a preclinical testing approach involves in vivo mouse models that mimic local tissue effects of cytotoxic snakebites in humans. However, current methods for assessing necrosis severity are time-consuming and susceptible to human error. To address this, we present the Venom Induced Dermonecrosis Analysis tooL (VIDAL), a machine-learning-guided image-based solution that can automatically identify dermonecrotic lesions in mice, adjust for lighting biases, scale the image, extract lesion area and discolouration, and calculate the severity of dermonecrosis. We also introduce a new unit, the dermonecrotic unit (DnU), to better capture the complexity of dermonecrosis severity. Our tool is comparable to the performance of state-of-the-art histopathological analysis, making it an accessible, accurate, and reproducible method for assessing dermonecrosis in mice. Given the urgent need to address the neglected tropical disease that is snakebite, high-throughput technologies such as VIDAL are crucial in developing and validating new and existing therapeutics for this debilitating disease.


Subject(s)
Snake Bites , Venoms , Humans , Mice , Animals , Snake Bites/therapy , Antivenins/pharmacology , Global Health , Necrosis
9.
Elife ; 122023 Sep 21.
Article in English | MEDLINE | ID: mdl-37732504

ABSTRACT

Pancreatic α-cells secrete glucagon, an insulin counter-regulatory peptide hormone critical for the maintenance of glucose homeostasis. Investigation of the function of human α-cells remains a challenge due to the lack of cost-effective purification methods to isolate high-quality α-cells from islets. Here, we use the reaction-based probe diacetylated Zinpyr1 (DA-ZP1) to introduce a novel and simple method for enriching live α-cells from dissociated human islet cells with ~95% purity. The α-cells, confirmed by sorting and immunostaining for glucagon, were cultured up to 10 days to form α-pseudoislets. The α-pseudoislets could be maintained in culture without significant loss of viability, and responded to glucose challenge by secreting appropriate levels of glucagon. RNA-sequencing analyses (RNA-seq) revealed that expression levels of key α-cell identity genes were sustained in culture while some of the genes such as DLK1, GSN, SMIM24 were altered in α-pseudoislets in a time-dependent manner. In conclusion, we report a method to sort human primary α-cells with high purity that can be used for downstream analyses such as functional and transcriptional studies.


Subject(s)
Glucagon-Secreting Cells , Insulin-Secreting Cells , Islets of Langerhans , Humans , Glucagon/metabolism , Transcriptome , Islets of Langerhans/metabolism , Insulin/metabolism , Glucagon-Secreting Cells/metabolism , Glucose/metabolism , Fluoresceins/metabolism , Insulin-Secreting Cells/metabolism
10.
Stroke Vasc Neurol ; 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37612053

ABSTRACT

BACKGROUND: Multiple cerebral venous sinus thrombosis (CVT) registries from various geographical regions indicate that female gender, the use of contraceptive pills, pregnancy and puerperium are important risk factors. In this study, we report the changes in the epidemiology of patients with CVT managed over the past 26 years. METHODS: The CMC Vellore CVT registry is a prospectively maintained database at the Christian Medical College, Vellore since January 1995. Stata software was used to analyse the data and assess the changes in the incidence, age and gender distribution over the previous 26 years. RESULTS: Among 1701 patients treated during the study period, 908 (53%) were women and 793 (47%) were men. The mean incidence of CVT was 49 per 100 000 admissions before 2010, which increased to 96 per 100 000 after 2010. Male gender had a higher odds of developing CVT (OR - 2.07 (CI 1.68 to 2.55, p<0.001). This could be attributed to the declining incidence of postpartum CVT after 2010 compared with the decade before 2010 (50% vs 20%). The mean age at presentation had increased from 24.5 to 33.2 years in the last decade. CONCLUSIONS: There was a clear change in the gender pattern from being a condition with female preponderance, to one where equal or more men are being affected. Lower incidence of postpartum CVT cases could be the driving factor. An increase in the overall incidence of CVT cases was noted, probably due to a higher index of clinical suspicion and better diagnostic imaging modalities.

11.
Biochem Pharmacol ; 216: 115758, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37604290

ABSTRACT

Snakebite envenoming is a neglected tropical disease that causes over 100,000 deaths annually. Envenomings result in variable pathologies, but systemic neurotoxicity is among the most serious and is currently only treated with difficult to access and variably efficacious commercial antivenoms. Venom-induced neurotoxicity is often caused by α-neurotoxins antagonising the muscle-type nicotinic acetylcholine receptor (nAChR), a ligand-gated ion channel. Discovery of therapeutics targeting α-neurotoxins is hampered by relying on binding assays that do not reveal restoration of receptor activity or more costly and/or lower throughput electrophysiology-based approaches. Here, we report the validation of a screening assay for nAChR activation using immortalised TE671 cells expressing the γ-subunit containing muscle-type nAChR and a fluorescent dye that reports changes in cell membrane potential. Assay validation using traditional nAChR agonists and antagonists, which either activate or block ion fluxes, was consistent with previous studies. We then characterised antagonism of the nAChR by a variety of elapid snake venoms that cause muscle paralysis in snakebite victims, before defining the toxin-inhibiting activities of commercial antivenoms, and new types of snakebite therapeutic candidates, namely monoclonal antibodies, decoy receptors, and small molecules. Our findings show robust evidence of assay uniformity across 96-well plates and highlight the amenability of this approach for the future discovery of new snakebite therapeutics via screening campaigns. The described assay therefore represents a useful first-step approach for identifying α-neurotoxins and their inhibitors in the context of snakebite envenoming, and it should provide wider value for studying modulators of nAChR activity from other sources.


Subject(s)
Receptors, Nicotinic , Snake Bites , Humans , Receptors, Nicotinic/metabolism , Neurotoxins/toxicity , Neurotoxins/chemistry , Snake Bites/drug therapy , Antivenins/pharmacology , Elapid Venoms/chemistry , Muscles/metabolism
12.
bioRxiv ; 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37577492

ABSTRACT

N 6 -methyladenosine (m 6 A) is the most abundant chemical modification in mRNA, and plays important roles in human and mouse embryonic stem cell pluripotency, maintenance, and differentiation. We have recently reported, for the first time, the role of m 6 A in the postnatal control of ß-cell function in physiological states and in Type 1 and 2 Diabetes. However, the precise mechanisms by which m 6 A acts to regulate the development of human and mouse ß-cells are unexplored. Here, we show that the m 6 A landscape is dynamic during human pancreas development, and that METTL14, one of the m 6 A writer complex proteins, is essential for the early differentiation of both human and mouse ß-cells.

13.
BMJ Neurol Open ; 5(1): e000414, 2023.
Article in English | MEDLINE | ID: mdl-37396795

ABSTRACT

Background: Opsoclonus-myoclonus-ataxia syndrome (OMAS) is characterised by the combination of opsoclonus and arrhythmic action myoclonus with axial ataxia and dysarthria. In adults, a majority are paraneoplastic secondary to solid organ tumours and could harbour antibodies against intracellular epitopes; however, certain proportions have detectable antibodies to various neuronal cell surface antigens. Anti-N-methyl-D-aspartate (NMDAR) antibodies and ovarian teratomas have been implicated in OMAS. Methods: Report of two cases and review of literature. Results: Two middle-aged women presented with subacute-onset, rapidly progressive OMAS and behavioural changes consistent with psychosis. The first patient had detectable antibodies to NMDAR in the cerebrospinal fluid (CSF) alone. Evaluation for ovarian teratoma was negative. The second patient had no detectable antibodies in serum or CSF; however, she had an underlying ovarian teratoma. Patient A was treated with pulse steroids, therapeutic plasma exchange (TPE) followed by bortezomib (BOR) and dexamethasone, while patient B was treated with steroids, TPE followed by surgical resection of ovarian teratoma. Both patients had favourable outcomes and were asymptomatic at the 6 monthly follow-up. Conclusions: With coexistent neuropsychiatric manifestations, OMAS can be considered a distinct entity of autoimmune encephalitis, pathogenesis being immune activation against known/unknown neuronal cell surface antigens. The observation of absence of anti-NMDAR antibody in patients with teratoma-associated OMAS and vice versa is intriguing. Further research on the potential role of ovarian teratoma in evoking neuronal autoimmunity and its targets is required. The management challenge in both cases including the potential use of BOR has been highlighted.

14.
J Biol Chem ; 299(8): 104986, 2023 08.
Article in English | MEDLINE | ID: mdl-37392854

ABSTRACT

Congenital hyperinsulinism of infancy (CHI) can be caused by a deficiency of the ubiquitously expressed enzyme short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD). To test the hypothesis that SCHAD-CHI arises from a specific defect in pancreatic ß-cells, we created genetically engineered ß-cell-specific (ß-SKO) or hepatocyte-specific (L-SKO) SCHAD knockout mice. While L-SKO mice were normoglycemic, plasma glucose in ß-SKO animals was significantly reduced in the random-fed state, after overnight fasting, and following refeeding. The hypoglycemic phenotype was exacerbated when the mice were fed a diet enriched in leucine, glutamine, and alanine. Intraperitoneal injection of these three amino acids led to a rapid elevation in insulin levels in ß-SKO mice compared to controls. Consistently, treating isolated ß-SKO islets with the amino acid mixture potently enhanced insulin secretion compared to controls in a low-glucose environment. RNA sequencing of ß-SKO islets revealed reduced transcription of ß-cell identity genes and upregulation of genes involved in oxidative phosphorylation, protein metabolism, and Ca2+ handling. The ß-SKO mouse offers a useful model to interrogate the intra-islet heterogeneity of amino acid sensing given the very variable expression levels of SCHAD within different hormonal cells, with high levels in ß- and δ-cells and virtually absent α-cell expression. We conclude that the lack of SCHAD protein in ß-cells results in a hypoglycemic phenotype characterized by increased sensitivity to amino acid-stimulated insulin secretion and loss of ß-cell identity.


Subject(s)
3-Hydroxyacyl-CoA Dehydrogenase , Amino Acids , Congenital Hyperinsulinism , Hypoglycemia , Insulin Secretion , Insulin-Secreting Cells , Animals , Mice , Amino Acids/metabolism , Amino Acids/pharmacology , Hypoglycemia/enzymology , Hypoglycemia/genetics , Insulin/metabolism , Insulin Secretion/drug effects , Mice, Knockout , 3-Hydroxyacyl-CoA Dehydrogenase/deficiency , 3-Hydroxyacyl-CoA Dehydrogenase/genetics , Insulin-Secreting Cells/enzymology , Congenital Hyperinsulinism/genetics
15.
Front Endocrinol (Lausanne) ; 14: 1203534, 2023.
Article in English | MEDLINE | ID: mdl-37441495

ABSTRACT

Introduction: The enhanced ß-cell senescence that accompanies insulin resistance and aging contributes to cellular dysfunction and loss of transcriptional identity leading to type 2 diabetes (T2D). While senescence is among the 12 recognized hallmarks of aging, its relation to other hallmarks including altered nutrient sensing (insulin/IGF1 pathway) in ß-cells is not fully understood. We previously reported that an increased expression of IGF1R in mouse and human ß-cells is a marker of older ß-cells; however, its contribution to age-related dysfunction and cellular senescence remains to be determined. Methods: In this study, we explored the direct role of IGF1R in ß-cell function and senescence using two independent mouse models with decreased IGF1/IGF1R signaling: a) Ames Dwarf mice (Dwarf +/+), which lack growth hormone and therefore have reduced circulating levels of IGF1, and b) inducible ß-cell-specific IGF1R knockdown (ßIgf1rKD) mice. Results: Compared to Dwarf+/- mice, Dwarf+/+ mice had lower body and pancreas weight, lower circulating IGF1 and insulin levels, and lower IGF1R and p21Cip1 protein expression in ß-cells, suggesting the suppression of senescence. Adult ßIgf1rKD mice showed improved glucose clearance and glucose-induced insulin secretion, accompanied by decreased p21Cip1 protein expression in ß-cells. RNA-Seq of islets isolated from these ßIgf1rKD mice revealed the restoration of three signaling pathways known to be downregulated by aging: sulfide oxidation, autophagy, and mTOR signaling. Additionally, deletion of IGF1R in mouse ß-cells increased transcription of genes important for maintaining ß-cell identity and function, such as Mafa, Nkx6.1, and Kcnj11, while decreasing senescence-related genes, such as Cdkn2a, Il1b, and Serpine 1. Decreased senescence and improved insulin-secretory function of ß-cells were also evident when the ßIgf1rKD mice were fed a high-fat diet (HFD; 60% kcal from fat, for 5 weeks). Discussion: These results suggest that IGF1R signaling plays a causal role in aging-induced ß-cell dysfunction. Our data also demonstrate a relationship between decreased IGF1R signaling and suppressed cellular senescence in pancreatic ß-cells. Future studies can further our understanding of the interaction between senescence and aging, developing interventions that restore ß-cell function and identity, therefore preventing the progression to T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Animals , Mice , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Receptor, IGF Type 1/metabolism , Signal Transduction/genetics
16.
Cell Chem Biol ; 30(9): 1144-1155.e4, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37354909

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. We recently discovered that neuronal regeneration-related protein (NREP/P311), an epigenetically regulated gene reprogrammed by parental metabolic syndrome, is downregulated in human NAFLD. To investigate the impact of NREP insufficiency, we used RNA-sequencing, lipidomics, and antibody microarrays on primary human hepatocytes. NREP knockdown induced transcriptomic remodeling that overlapped with key pathways impacted in human steatosis and steatohepatitis. Additionally, we observed enrichment of pathways involving phosphatidylinositol signaling and one-carbon metabolism. Lipidomics analyses also revealed an increase in cholesterol esters and triglycerides and decreased phosphatidylcholine levels in NREP-deficient hepatocytes. Signalomics identified calcium signaling as a potential mediator of NREP insufficiency's effects. Our results, together with the encouraging observation that several single nucleotide polymorphisms (SNPs) spanning the NREP locus are associated with metabolic traits, provide a strong rationale for targeting hepatic NREP to improve NAFLD pathophysiology.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/genetics , Hepatocytes/metabolism , Liver/metabolism , Lipid Metabolism , Carbon/metabolism
17.
Cell Metab ; 35(7): 1242-1260.e9, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37339634

ABSTRACT

Type 1 (T1D) or type 2 diabetes (T2D) are caused by a deficit of functional insulin-producing ß cells. Thus, the identification of ß cell trophic agents could allow the development of therapeutic strategies to counteract diabetes. The discovery of SerpinB1, an elastase inhibitor that promotes human ß cell growth, prompted us to hypothesize that pancreatic elastase (PE) regulates ß cell viability. Here, we report that PE is up-regulated in acinar cells and in islets from T2D patients, and negatively impacts ß cell viability. Using high-throughput screening assays, we identified telaprevir as a potent PE inhibitor that can increase human and rodent ß cell viability in vitro and in vivo and improve glucose tolerance in insulin-resistant mice. Phospho-antibody microarrays and single-cell RNA sequencing analysis identified PAR2 and mechano-signaling pathways as potential mediators of PE. Taken together, our work highlights PE as a potential regulator of acinar-ß cell crosstalk that acts to limit ß cell viability, leading to T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Humans , Mice , Animals , Acinar Cells/metabolism , Diabetes Mellitus, Type 2/metabolism , Pancreatic Elastase/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Cell Communication
18.
bioRxiv ; 2023 May 26.
Article in English | MEDLINE | ID: mdl-37292780

ABSTRACT

Brown adipose tissue (BAT) has the capacity to regulate systemic metabolism through the secretion of signaling lipids. N6-methyladenosine (m 6 A) is the most prevalent and abundant post-transcriptional mRNA modification and has been reported to regulate BAT adipogenesis and energy expenditure. In this study, we demonstrate that the absence of m 6 A methyltransferase-like 14 (METTL14), modifies the BAT secretome to initiate inter-organ communication to improve systemic insulin sensitivity. Importantly, these phenotypes are independent of UCP1-mediated energy expenditure and thermogenesis. Using lipidomics, we identified prostaglandin E2 (PGE2) and prostaglandin F2a (PGF2a) as M14 KO -BAT-secreted insulin sensitizers. Notably, circulatory PGE2 and PGF2a levels are inversely correlated with insulin sensitivity in humans. Furthermore, in vivo administration of PGE2 and PGF2a in high-fat diet-induced insulin-resistant obese mice recapitulates the phenotypes of METTL14 deficient animals. PGE2 or PGF2a improves insulin signaling by suppressing the expression of specific AKT phosphatases. Mechanistically, METTL14-mediated m 6 A installation promotes decay of transcripts encoding prostaglandin synthases and their regulators in human and mouse brown adipocytes in a YTHDF2/3-dependent manner. Taken together, these findings reveal a novel biological mechanism through which m 6 A-dependent regulation of BAT secretome regulates systemic insulin sensitivity in mice and humans. Highlights: Mettl14 KO -BAT improves systemic insulin sensitivity via inter-organ communication; PGE2 and PGF2a are BAT-secreted insulin sensitizers and browning inducers;PGE2 and PGF2a sensitize insulin responses through PGE2-EP-pAKT and PGF2a-FP-AKT axis; METTL14-mediated m 6 A installation selectively destabilizes prostaglandin synthases and their regulator transcripts; Targeting METTL14 in BAT has therapeutic potential to enhance systemic insulin sensitivity.

19.
Metabolism ; 145: 155591, 2023 08.
Article in English | MEDLINE | ID: mdl-37230214

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a liver manifestation of metabolic syndrome, and is estimated to affect one billion individuals worldwide. An increased intake of a high-fat diet (HFD) and sugar-sweetened beverages are risk-factors for NAFLD development, but how their combined intake promotes progression to a more severe form of liver injury is unknown. Here we show that fructose metabolism via ketohexokinase (KHK) C isoform leads to unresolved endoplasmic reticulum (ER) stress when coupled with a HFD intake. Conversely, a liver-specific knockdown of KHK in mice consuming fructose on a HFD is adequate to improve the NAFLD activity score and exert a profound effect on the hepatic transcriptome. Overexpression of KHK-C in cultured hepatocytes is sufficient to induce ER stress in fructose free media. Upregulation of KHK-C is also observed in mice with genetically induced obesity or metabolic dysfunction, whereas KHK knockdown in these mice improves metabolic function. Additionally, in over 100 inbred strains of male or female mice hepatic KHK expression correlates positively with adiposity, insulin resistance, and liver triglycerides. Similarly, in 241 human subjects and their controls, hepatic Khk expression is upregulated in early, but not late stages of NAFLD. In summary, we describe a novel role of KHK-C in triggering ER stress, which offers a mechanistic understanding of how the combined intake of fructose and a HFD propagates the development of metabolic complications.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Female , Humans , Male , Mice , Diet, High-Fat/adverse effects , Fructokinases/genetics , Fructokinases/metabolism , Fructose/pharmacology , Lipogenesis/physiology , Liver/metabolism , Models, Genetic , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...