Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Comput Chem ; 45(14): 1112-1129, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38258532

ABSTRACT

Benzo[d]-X-zolyl-pyridinyl (XO, S, NH) radicals represent a promising class of redox-active molecules for organic batteries. We present a multistep screening procedure to identify the most promising radical candidates. Experimental investigations and highly correlated wave function-based calculations are performed to determine benchmark redox potentials. Based on these, the accuracies of different methods (semi-empirical, density functional theory, wave function-based), solvent models, dispersion corrections, and basis sets are evaluated. The developed screening procedure consists of three steps: First, a conformer search is performed with CREST. The molecules are selected based on the redox potentials calculated using GFN2-xTB. Second, HOMO energies calculated with reparametrized B3LYP-D3(BJ) and the def2-SVP basis set are used as selection criteria. The final molecules are selected based on the redox potentials calculated from Gibbs energies using BP86-D3(BJ)/def2-TZVP. With this multistep screening approach, promising molecules can be suggested for synthesis, and structure-property relationships can be derived.

2.
Chemistry ; 30(6): e202302979, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-37950854

ABSTRACT

Sustainability is one of the hot topics of today's research, in particular when it comes to energy-storage systems such as batteries. Redox-active molecules implemented in organic batteries represent a promising alternative to lithium-ion batteries, which partially rely on non-sustainable heavy metal salts. As an alternative, we propose benzothiazole, -oxazole and -imidazole derivatives as redox-active moieties for polymers in organic (radical) batteries. The target molecules were identified by a combination of theoretical and experimental approaches for the investigation of new organic active materials. Herein, we present the synthesis, electrochemical characterization and theoretical investigation of the proposed molecules, which can later be introduced into a polymer backbone and used in organic polymer batteries.

3.
Adv Sci (Weinh) ; 9(17): e2200535, 2022 06.
Article in English | MEDLINE | ID: mdl-35481674

ABSTRACT

Aqueous-organic redox flow batteries (RFBs) have gained considerable interest in recent years, given their potential for an economically viable energy storage at large scale. This, however, strongly depends on both the robustness of the underlying electrolyte chemistry against molecular decomposition reactions as well as the device's operation. With regard to this, the presented study focuses on the use of in situ IR spectroscopy in combination with a multivariate curve resolution approach to gain insight into both the molecular structures of the active materials present within the electrolyte as well as crucial electrolyte state parameters, represented by the electrolyte's state of charge (SOC) and state of health (SOH). To demonstrate the general applicability of the approach, methyl viologen (MV) and bis(3-trimethylammonium)propyl viologen (BTMAPV) are chosen, as viologens are frequently used as negolytes in aqueous-organic RFBs. The study's findings highlight the impact of in situ spectroscopy and spectral deconvolution tools on the precision of the obtainable SOC and SOH values. Furthermore, the study indicates the occurrence of multiple viologen dimers, which possibly influence the electrolyte lifetime and charging characteristics.


Subject(s)
Electrolytes , Viologens , Electric Power Supplies , Electrolytes/chemistry , Oxidation-Reduction , Spectrum Analysis , Viologens/chemistry
4.
RSC Adv ; 11(61): 38759-38764, 2021 Nov 29.
Article in English | MEDLINE | ID: mdl-35493233

ABSTRACT

A new sulfamidic acid anthraquinone derivative was synthesized from 2,6-diaminoanthraquinone with high yields, designed for utilization in redox flow batteries. The active material was investigated with cyclic voltammetry, revealing a reversible redox reaction at approximately -0.65 V vs. Ag/AgCl at pH-values above 12. A stress test in a redox flow battery was applied with hold times at critical states of charge and at 32 °C as well as at 60 °C. Furthermore, the stability was investigated at the maximum concentration of the anolyte. All in all, the material showed the lowest decomposition rates at 60 °C reported so far for an organic anolyte in a redox flow battery.

SELECTION OF CITATIONS
SEARCH DETAIL
...