Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 473, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212624

ABSTRACT

Complex II (CII) activity controls phenomena that require crosstalk between metabolism and signaling, including neurodegeneration, cancer metabolism, immune activation, and ischemia-reperfusion injury. CII activity can be regulated at the level of assembly, a process that leverages metastable assembly intermediates. The nature of these intermediates and how CII subunits transfer between metastable complexes remains unclear. In this work, we identify metastable species containing the SDHA subunit and its assembly factors, and we assign a preferred temporal sequence of appearance of these species during CII assembly. Structures of two species show that the assembly factors undergo disordered-to-ordered transitions without the appearance of significant secondary structure. The findings identify that intrinsically disordered regions are critical in regulating CII assembly, an observation that has implications for the control of assembly in other biomolecular complexes.


Subject(s)
Catalytic Domain , Protein Structure, Secondary
2.
Eur J Clin Invest ; 54(6): e14174, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38291340

ABSTRACT

BACKGROUND: Amplification of HER2, a receptor tyrosine kinase and a breast cancer-linked oncogene, is associated with aggressive disease. HER2 protein is localised mostly at the cell membrane, but a fraction translocates to mitochondria. Whether and how mitochondrial HER2 contributes to tumorigenicity is currently unknown. METHODS: We enriched the mitochondrial (mt-)HER2 fraction in breast cancer cells using an N-terminal mitochondrial targeting sequence and analysed how this manipulation impacts bioenergetics and tumorigenic properties. The role of the tyrosine kinase activity of mt-HER2 was assessed in wild type, kinase-dead (K753M) and kinase-enhanced (V659E) mtHER2 constructs. RESULTS: We document that mt-HER2 associates with the oxidative phosphorylation system, stimulates bioenergetics and promotes larger respiratory supercomplexes. mt-HER2 enhances proliferation and invasiveness in vitro and tumour growth and metastatic potential in vivo, in a kinase activity-dependent manner. On the other hand, constitutively active mt-HER2 provokes excessive mitochondria ROS generation, sensitises to cell death, and restricts growth of primary tumours, suggesting that regulation of HER2 activity in mitochondria is required for the maximal pro-tumorigenic effect. CONCLUSIONS: mt-HER2 promotes tumorigenicity by supporting bioenergetics and optimal redox balance.


Subject(s)
Breast Neoplasms , Mitochondria , Receptor, ErbB-2 , Mitochondria/metabolism , Humans , Receptor, ErbB-2/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Female , Animals , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Mice , Carcinogenesis/metabolism , Oxidative Phosphorylation , Cell Proliferation , Energy Metabolism , Cell Respiration/physiology
3.
EMBO J ; 42(23): e113527, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37846891

ABSTRACT

Emergency granulopoiesis is the enhanced and accelerated production of granulocytes that occurs during acute infection. The contribution of hematopoietic stem cells (HSCs) to this process was reported; however, how HSCs participate in emergency granulopoiesis remains elusive. Here, using a mouse model of emergency granulopoiesis we observe transcriptional changes in HSCs as early as 4 h after lipopolysaccharide (LPS) administration. We observe that the HSC identity is changed towards a myeloid-biased HSC and show that CD201 is enriched in lymphoid-biased HSCs. While CD201 expression under steady-state conditions reveals a lymphoid bias, under emergency granulopoiesis loss of CD201 marks the lymphoid-to-myeloid transcriptional switch. Mechanistically, we determine that lymphoid-biased CD201+ HSCs act as a first response during emergency granulopoiesis due to direct sensing of LPS by TLR4 and downstream activation of NF-κΒ signaling. The myeloid-biased CD201- HSC population responds indirectly during an acute infection by sensing G-CSF, increasing STAT3 phosphorylation, and upregulating LAP/LAP* C/EBPß isoforms. In conclusion, HSC subpopulations support early phases of emergency granulopoiesis due to their transcriptional rewiring from a lymphoid-biased to myeloid-biased population and thus establishing alternative paths to supply elevated numbers of granulocytes.


Subject(s)
Hematopoietic Stem Cells , Lipopolysaccharides , Lipopolysaccharides/metabolism , Hematopoiesis , Granulocytes/metabolism
4.
Cancers (Basel) ; 15(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37760446

ABSTRACT

A recent paper published in Nature Medicine reported on the Phase I clinical trial of a mitochondria-targeting anti-cancer agent IACS-01059 in patients with acute myeloid leukemia (AML) and solid tumors [...].

5.
Methods Mol Biol ; 2675: 297-308, 2023.
Article in English | MEDLINE | ID: mdl-37258772

ABSTRACT

Cancer cells depend on nucleotides for proliferation. Inhibition of nucleotide metabolism by antimetabolites is a well-established anticancer therapy. However, resistance and toxicity to antimetabolite treatments reduce their effectiveness. Here, we focus on the pyrimidine de novo synthesis pathway, which is crucial for cancer cell proliferation, yet its pharmacological targeting in cancer has been without much clinical success so far. Hence, it is important to understand how cancer cells cope with the insufficiency of this pathway. Here, we describe a procedure to prepare subcutaneous tumor model deficient in de novo pyrimidine synthesis. For examination of metabolic responses to de novo synthesis blockade in tumors, we propose application of MALDI imaging that allows spatially resolved examination of metabolic responses to de novo synthesis blockade in tumors.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Neoplasms , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Pyrimidines , Neoplasms/metabolism , Nucleotides , Spatial Analysis
6.
EClinicalMedicine ; 57: 101873, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37064512

ABSTRACT

Background: Mitochondria present an emerging target for cancer treatment. We have investigated the effect of mitochondrially targeted tamoxifen (MitoTam), a first-in-class anti-cancer agent, in patients with solid metastatic tumours. Methods: MitoTam was tested in an open-label, single-centre (Department of Oncology, General Faculty Hospital, Charles University, Czech Republic), phase I/Ib trial in metastatic patients with various malignancies and terminated oncological therapies. In total, 75 patients were enrolled between May 23, 2018 and July 22, 2020. Phase I evaluated escalating doses of MitoTam in two therapeutic regimens using the 3 + 3 design to establish drug safety and maximum tolerated dose (MTD). In phase Ib, three dosing regimens were applied over 8 and 6 weeks to evaluate long-term toxicity of MitoTam as the primary objective and its anti-cancer effect as a secondary objective. This trial was registered with the European Medicines Agency under EudraCT 2017-004441-25. Findings: In total, 37 patients were enrolled into phase I and 38 into phase Ib. In phase I, the initial application of MitoTam via peripheral vein indicated high risk of thrombophlebitis, which was avoided by central vein administration. The highest dose with acceptable side effects was 5.0 mg/kg. The prevailing adverse effects (AEs) in phase I were neutropenia (30%), anaemia (30%) and fever/hyperthermia (30%), and in phase Ib fever/hyperthermia (58%) together with anaemia (26%) and neutropenia (16%). Serious AEs were mostly related to thromboembolic (TE) complications that affected 5% and 13% of patients in phase I and Ib, respectively. The only statistically significant AE related to MitoTam treatment was anaemia in phase Ib (p = 0.004). Of the tested regimens weekly dosing with 3.0 mg/kg for 6 weeks afforded the best safety profile with almost all being grade 1 (G1) AEs. Altogether, five fatalities occurred during the study, two of them meeting criteria for Suspected Unexpected Serious Adverse Events Reporting (SUSAR) (G4 thrombocytopenia and G5 stroke). MitoTam showed benefit evaluated as clinical benefit rate (CBR) in 37% patients with the largest effect in renal cell carcinoma (RCC) where four out of six patients reached disease stabilisation (SD), one reached partial response (PR) so that in total, five out of six (83%) patients showed CBR. Interpretation: In this study, the MTD was established as 5.0 mg/kg and the recommended dose of MitoTam as 3.0 mg/kg given once per week via central vein with recommended preventive anti-coagulation therapy. The prevailing toxicity included haematological AEs, hyperthermia/fever and TE complications. One fatal stroke and non-fatal G4 thrombocytopenia were recorded. MitoTam showed high efficacy against RCC. Funding: Smart Brain Ltd. Translation: For the Czech translation of the abstract see Supplementary Materials section.

7.
J Cell Biol ; 222(3)2023 03 06.
Article in English | MEDLINE | ID: mdl-36795453

ABSTRACT

Mammalian genes were long thought to be constrained within somatic cells in most cell types. This concept was challenged recently when cellular organelles including mitochondria were shown to move between mammalian cells in culture via cytoplasmic bridges. Recent research in animals indicates transfer of mitochondria in cancer and during lung injury in vivo, with considerable functional consequences. Since these pioneering discoveries, many studies have confirmed horizontal mitochondrial transfer (HMT) in vivo, and its functional characteristics and consequences have been described. Additional support for this phenomenon has come from phylogenetic studies. Apparently, mitochondrial trafficking between cells occurs more frequently than previously thought and contributes to diverse processes including bioenergetic crosstalk and homeostasis, disease treatment and recovery, and development of resistance to cancer therapy. Here we highlight current knowledge of HMT between cells, focusing primarily on in vivo systems, and contend that this process is not only (patho)physiologically relevant, but also can be exploited for the design of novel therapeutic approaches.


Subject(s)
Mitochondria , Neoplasms , Animals , Phylogeny , Mitochondria/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Energy Metabolism , Mammals
8.
Theranostics ; 13(2): 438-457, 2023.
Article in English | MEDLINE | ID: mdl-36632231

ABSTRACT

Rationale: Despite growing evidence for mitochondria's involvement in cancer, the roles of specific metabolic components outside the respiratory complex have been little explored. We conducted metabolomic studies on mitochondrial DNA (mtDNA)-deficient (ρ0) cancer cells with lower proliferation rates to clarify the undefined roles of mitochondria in cancer growth. Methods and results: Despite extensive metabolic downregulation, ρ0 cells exhibited high glycerol-3-phosphate (G3P) level, due to low activity of mitochondrial glycerol-3-phosphate dehydrogenase (GPD2). Knockout (KO) of GPD2 resulted in cell growth suppression as well as inhibition of tumor progression in vivo. Surprisingly, this was unrelated to the conventional bioenergetic function of GPD2. Instead, multi-omics results suggested major changes in ether lipid metabolism, for which GPD2 provides dihydroxyacetone phosphate (DHAP) in ether lipid biosynthesis. GPD2 KO cells exhibited significantly lower ether lipid level, and their slower growth was rescued by supplementation of a DHAP precursor or ether lipids. Mechanistically, ether lipid metabolism was associated with Akt pathway, and the downregulation of Akt/mTORC1 pathway due to GPD2 KO was rescued by DHAP supplementation. Conclusion: Overall, the GPD2-ether lipid-Akt axis is newly described for the control of cancer growth. DHAP supply, a non-bioenergetic process, may constitute an important role of mitochondria in cancer.


Subject(s)
Glycerolphosphate Dehydrogenase , Mitochondria , Neoplasms , Proto-Oncogene Proteins c-akt , Energy Metabolism , Ethers/metabolism , Glycerolphosphate Dehydrogenase/genetics , Glycerolphosphate Dehydrogenase/metabolism , Mitochondria/enzymology , Proto-Oncogene Proteins c-akt/metabolism , Animals , Mice , Neoplasms/enzymology , Neoplasms/pathology , Humans
9.
Front Oncol ; 12: 1046630, 2022.
Article in English | MEDLINE | ID: mdl-36582801

ABSTRACT

Targeting tumor metabolism for cancer therapy is an old strategy. In fact, historically the first effective cancer therapeutics were directed at nucleotide metabolism. The spectrum of metabolic drugs considered in cancer increases rapidly - clinical trials are in progress for agents directed at glycolysis, oxidative phosphorylation, glutaminolysis and several others. These pathways are essential for cancer cell proliferation and redox homeostasis, but are also required, to various degrees, in other cell types present in the tumor microenvironment, including immune cells, endothelial cells and fibroblasts. How metabolism-targeted treatments impact these tumor-associated cell types is not fully understood, even though their response may co-determine the overall effectivity of therapy. Indeed, the metabolic dependencies of stromal cells have been overlooked for a long time. Therefore, it is important that metabolic therapy is considered in the context of tumor microenvironment, as understanding the metabolic vulnerabilities of both cancer and stromal cells can guide new treatment concepts and help better understand treatment resistance. In this review we discuss recent findings covering the impact of metabolic interventions on cellular components of the tumor microenvironment and their implications for metabolic cancer therapy.

10.
Sci Rep ; 12(1): 17081, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36224252

ABSTRACT

In humans, disruptions in the heme biosynthetic pathway are associated with various types of porphyrias, including variegate porphyria that results from the decreased activity of protoporphyrinogen oxidase IX (PPO; E.C.1.3.3.4), the enzyme catalyzing the penultimate step of the heme biosynthesis. Here we report the generation and characterization of human cell lines, in which PPO was inactivated using the CRISPR/Cas9 system. The PPO knock-out (PPO-KO) cell lines are viable with the normal proliferation rate and show massive accumulation of protoporphyrinogen IX, the PPO substrate. Observed low heme levels trigger a decrease in the amount of functional heme containing respiratory complexes III and IV and overall reduced oxygen consumption rates. Untargeted proteomics further revealed dysregulation of 22 cellular proteins, including strong upregulation of 5-aminolevulinic acid synthase, the major regulatory protein of the heme biosynthesis, as well as additional ten targets with unknown association to heme metabolism. Importantly, knock-in of PPO into PPO-KO cells rescued their wild-type phenotype, confirming the specificity of our model. Overall, our model system exploiting a non-erythroid human U-2 OS cell line reveals physiological consequences of the PPO ablation at the cellular level and can serve as a tool to study various aspects of dysregulated heme metabolism associated with variegate porphyria.


Subject(s)
Oxidoreductases , Porphyria, Variegate , Aminolevulinic Acid/metabolism , CRISPR-Cas Systems , Cell Line , Heme , Humans , Oxidoreductases/genetics , Oxidoreductases/metabolism , Porphyria, Variegate/genetics , Protoporphyrinogen Oxidase/genetics , Protoporphyrinogen Oxidase/metabolism , Protoporphyrins
11.
Methods Mol Biol ; 2431: 533-546, 2022.
Article in English | MEDLINE | ID: mdl-35412296

ABSTRACT

Intracellular trafficking of organelles driven by molecular motors underlies essential cellular processes. Mitochondria, the powerhouses of the cell, are one of the major cargoes of molecular motors. Efficient distribution of mitochondria ensures cellular fitness while defects in this process contribute to severe pathologies, such as neurodegenerative diseases. Reconstitution of the mitochondrial microtubule-based transport in vitro in a bottom-up approach provides a powerful tool to investigate the mitochondrial trafficking machinery in a controlled environment in the absence of complex intracellular interactions. In this chapter, we describe the procedures for achieving such reconstitution of mitochondrial transport.


Subject(s)
Kinesins , Microtubules , Biological Transport , Microtubules/metabolism , Mitochondria/metabolism , Organelles
12.
Autophagy ; 18(10): 2409-2426, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35258392

ABSTRACT

Mitochondrial oxidative phosphorylation (OXPHOS) generates ATP, but OXPHOS also supports biosynthesis during proliferation. In contrast, the role of OXPHOS during quiescence, beyond ATP production, is not well understood. Using mouse models of inducible OXPHOS deficiency in all cell types or specifically in the vascular endothelium that negligibly relies on OXPHOS-derived ATP, we show that selectively during quiescence OXPHOS provides oxidative stress resistance by supporting macroautophagy/autophagy. Mechanistically, OXPHOS constitutively generates low levels of endogenous ROS that induce autophagy via attenuation of ATG4B activity, which provides protection from ROS insult. Physiologically, the OXPHOS-autophagy system (i) protects healthy tissue from toxicity of ROS-based anticancer therapy, and (ii) provides ROS resistance in the endothelium, ameliorating systemic LPS-induced inflammation as well as inflammatory bowel disease. Hence, cells acquired mitochondria during evolution to profit from oxidative metabolism, but also built in an autophagy-based ROS-induced protective mechanism to guard against oxidative stress associated with OXPHOS function during quiescence.Abbreviations: AMPK: AMP-activated protein kinase; AOX: alternative oxidase; Baf A: bafilomycin A1; CI, respiratory complexes I; DCF-DA: 2',7'-dichlordihydrofluorescein diacetate; DHE: dihydroethidium; DSS: dextran sodium sulfate; ΔΨmi: mitochondrial inner membrane potential; EdU: 5-ethynyl-2'-deoxyuridine; ETC: electron transport chain; FA: formaldehyde; HUVEC; human umbilical cord endothelial cells; IBD: inflammatory bowel disease; LC3B: microtubule associated protein 1 light chain 3 beta; LPS: lipopolysaccharide; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; mtDNA: mitochondrial DNA; NAC: N-acetyl cysteine; OXPHOS: oxidative phosphorylation; PCs: proliferating cells; PE: phosphatidylethanolamine; PEITC: phenethyl isothiocyanate; QCs: quiescent cells; ROS: reactive oxygen species; PLA2: phospholipase A2, WB: western blot.


Subject(s)
Autophagy , Inflammatory Bowel Diseases , AMP-Activated Protein Kinases/metabolism , Adenosine Triphosphate/metabolism , Animals , Cysteine/metabolism , DNA, Mitochondrial/metabolism , Dextrans/metabolism , Endothelial Cells/metabolism , Fibroblasts/metabolism , Formaldehyde/metabolism , Humans , Inflammatory Bowel Diseases/metabolism , Isothiocyanates , Lipopolysaccharides/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Phosphatidylethanolamines/metabolism , Reactive Oxygen Species/metabolism , Respiration , Sirolimus
13.
J Natl Cancer Inst ; 114(1): 130-138, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34415331

ABSTRACT

BACKGROUND: Pheochromocytoma and paraganglioma (PPGL) are neuroendocrine tumors with frequent mutations in genes linked to the tricarboxylic acid cycle. However, no pathogenic variant has been found to date in succinyl-CoA ligase (SUCL), an enzyme that provides substrate for succinate dehydrogenase (SDH; mitochondrial complex II [CII]), a known tumor suppressor in PPGL. METHODS: A cohort of 352 patients with apparently sporadic PPGL underwent genetic testing using a panel of 54 genes developed at the National Institutes of Health, including the SUCLG2 subunit of SUCL. Gene deletion, succinate levels, and protein levels were assessed in tumors where possible. To confirm the possible mechanism, we used a progenitor cell line, hPheo1, derived from a human pheochromocytoma, and ablated and re-expressed SUCLG2. RESULTS: We describe 8 germline variants in the guanosine triphosphate-binding domain of SUCLG2 in 15 patients (15 of 352, 4.3%) with apparently sporadic PPGL. Analysis of SUCLG2-mutated tumors and SUCLG2-deficient hPheo1 cells revealed absence of SUCLG2 protein, decrease in the level of the SDHB subunit of SDH, and faulty assembly of the complex II, resulting in aberrant respiration and elevated succinate accumulation. CONCLUSIONS: Our study suggests SUCLG2 as a novel candidate gene in the genetic landscape of PPGL. Large-scale sequencing may uncover additional cases harboring SUCLG2 variants and provide more detailed information about their prevalence and penetrance.


Subject(s)
Adrenal Gland Neoplasms , Paraganglioma , Pheochromocytoma , Adrenal Gland Neoplasms/genetics , Adrenal Gland Neoplasms/pathology , Germ-Line Mutation , Humans , Paraganglioma/genetics , Paraganglioma/pathology , Pheochromocytoma/genetics , Pheochromocytoma/pathology , Succinate Dehydrogenase/genetics , Succinate Dehydrogenase/metabolism
14.
Crit Rev Biochem Mol Biol ; 56(4): 401-425, 2021 08.
Article in English | MEDLINE | ID: mdl-34139898

ABSTRACT

Mitochondria are organelles present in most eukaryotic cells, where they play major and multifaceted roles. The classical notion of the main mitochondrial function as the powerhouse of the cell per se has been complemented by recent discoveries pointing to mitochondria as organelles affecting a number of other auxiliary processes. They go beyond the classical energy provision via acting as a relay point of many catabolic and anabolic processes, to signaling pathways critically affecting cell growth by their implication in de novo pyrimidine synthesis. These additional roles further underscore the importance of mitochondrial homeostasis in various tissues, where its deregulation promotes a number of pathologies. While it has long been known that mitochondria can move within a cell to sites where they are needed, recent research has uncovered that mitochondria can also move between cells. While this intriguing field of research is only emerging, it is clear that mobilization of mitochondria requires a complex apparatus that critically involves mitochondrial proteins of the Miro family, whose role goes beyond the mitochondrial transfer, as will be covered in this review.


Subject(s)
Mitochondria/metabolism , Mitochondrial Proteins/metabolism , rho GTP-Binding Proteins/metabolism , Animals , Biological Transport, Active/physiology , Humans , Mitochondria/genetics , Mitochondrial Proteins/genetics , Pyrimidines/biosynthesis , rho GTP-Binding Proteins/genetics
15.
Oncogene ; 40(14): 2539-2552, 2021 04.
Article in English | MEDLINE | ID: mdl-33686239

ABSTRACT

Pancreatic cancer is one of the deadliest forms of cancer, which is attributed to lack of effective treatment options and drug resistance. Mitochondrial inhibitors have emerged as a promising class of anticancer drugs, and several inhibitors of the electron transport chain (ETC) are being clinically evaluated. We hypothesized that resistance to ETC inhibitors from the biguanide class could be induced by inactivation of SMAD4, an important tumor suppressor involved in transforming growth factor ß (TGFß) signaling, and associated with altered mitochondrial activity. Here we show that, paradoxically, both TGFß-treatment and the loss of SMAD4, a downstream member of TGFß signaling cascade, induce resistance to biguanides, decrease mitochondrial respiration, and fragment the mitochondrial network. Mechanistically, the resistance of SMAD4-deficient cells is mediated by increased mitophagic flux driven by MAPK/ERK signaling, whereas TGFß-induced resistance is autophagy-independent and linked to epithelial-to-mesenchymal transition (EMT). Interestingly, mitochondria-targeted tamoxifen, a complex I inhibitor under clinical trial, overcomes resistance mediated by SMAD4-deficiency or TGFß signaling. Our data point to differential mechanisms underlying the resistance to treatment in PDAC arising from TGFß signaling and SMAD4 loss, respectively. The findings will help the development of mitochondria-targeted therapy for pancreatic cancer patients with SMAD4 as a plausible predictive marker.


Subject(s)
Pancreatic Neoplasms/metabolism , Smad4 Protein/metabolism , Humans , Mitophagy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Signal Transduction
17.
Cell Metab ; 33(2): 283-299.e9, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33400911

ABSTRACT

Platelets are known to enhance the wound-healing activity of mesenchymal stem cells (MSCs). However, the mechanism by which platelets improve the therapeutic potential of MSCs has not been elucidated. Here, we provide evidence that, upon their activation, platelets transfer respiratory-competent mitochondria to MSCs primarily via dynamin-dependent clathrin-mediated endocytosis. We found that this process enhances the therapeutic efficacy of MSCs following their engraftment in several mouse models of tissue injury, including full-thickness cutaneous wound and dystrophic skeletal muscle. By combining in vitro and in vivo experiments, we demonstrate that platelet-derived mitochondria promote the pro-angiogenic activity of MSCs via their metabolic remodeling. Notably, we show that activation of the de novo fatty acid synthesis pathway is required for increased secretion of pro-angiogenic factors by platelet-preconditioned MSCs. These results reveal a new mechanism by which platelets potentiate MSC properties and underline the importance of testing platelet mitochondria quality prior to their clinical use.


Subject(s)
Blood Platelets/metabolism , Mesenchymal Stem Cells/metabolism , Mitochondria/metabolism , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Wound Healing
18.
Nat Commun ; 11(1): 3123, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32561740

ABSTRACT

Intracellular trafficking of organelles, driven by kinesin-1 stepping along microtubules, underpins essential cellular processes. In absence of other proteins on the microtubule surface, kinesin-1 performs micron-long runs. Under crowding conditions, however, kinesin-1 motility is drastically impeded. It is thus unclear how kinesin-1 acts as an efficient transporter in intracellular environments. Here, we demonstrate that TRAK1 (Milton), an adaptor protein essential for mitochondrial trafficking, activates kinesin-1 and increases robustness of kinesin-1 stepping on crowded microtubule surfaces. Interaction with TRAK1 i) facilitates kinesin-1 navigation around obstacles, ii) increases the probability of kinesin-1 passing through cohesive islands of tau and iii) increases the run length of kinesin-1 in cell lysate. We explain the enhanced motility by the observed direct interaction of TRAK1 with microtubules, providing an additional anchor for the kinesin-1-TRAK1 complex. Furthermore, TRAK1 enables mitochondrial transport in vitro. We propose adaptor-mediated tethering as a mechanism regulating kinesin-1 motility in various cellular environments.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Kinesins/metabolism , Microtubules/metabolism , Mitochondria/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/isolation & purification , Animals , Cell Line, Tumor , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Kinesins/genetics , Kinesins/isolation & purification , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Microscopy, Fluorescence , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , tau Proteins/genetics , tau Proteins/metabolism
19.
Redox Rep ; 25(1): 26-32, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32290794

ABSTRACT

Increasing evidence points to the respiratory Complex II (CII) as a source and modulator of reactive oxygen species (ROS). Both functional loss of CII as well as its pharmacological inhibition can lead to ROS generation in cells, with a relevant impact on the development of pathophysiological conditions, i.e. cancer and neurodegenerative diseases. While the basic framework of CII involvement in ROS production has been defined, the fine details still await clarification. It is important to resolve these aspects to fully understand the role of CII in pathology and to explore its therapeutic potential in cancer and other diseases.


Subject(s)
Electron Transport Complex II/metabolism , Mitochondria/pathology , Mitochondrial Diseases/pathology , Molecular Targeted Therapy , Reactive Oxygen Species/metabolism , Animals , Electron Transport , Humans , Mitochondria/metabolism , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/metabolism
20.
Biochim Biophys Acta Mol Basis Dis ; 1866(6): 165759, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32151633

ABSTRACT

Dihydroorotate dehydrogenase (DHODH) is an enzyme of the de novo pyrimidine synthesis pathway that provides nucleotides for RNA/DNA synthesis essential for proliferation. In mammalian cells, DHODH is localized in mitochondria, linked to the respiratory chain via the coenzyme Q pool. Here we discuss the role of DHODH in the oxidative phosphorylation system and in the initiation and progression of cancer. We summarize recent findings on DHODH biology, the progress made in the development of new, specific inhibitors of DHODH intended for cancer therapy, and the mechanistic insights into the consequences of DHODH inhibition.


Subject(s)
Mitochondria/genetics , Neoplasms/genetics , Oxidative Phosphorylation , Oxidoreductases Acting on CH-CH Group Donors/genetics , Cell Proliferation/drug effects , Dihydroorotate Dehydrogenase , Electron Transport/genetics , Enzyme Inhibitors/therapeutic use , Humans , Mitochondria/metabolism , Neoplasms/pathology , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Ubiquinone/analogs & derivatives , Ubiquinone/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...