Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 120(2): 022502, 2018 Jan 12.
Article in English | MEDLINE | ID: mdl-29376727

ABSTRACT

The g factor of the 56 ns half-life isomeric state in ^{128}Cs has been measured using the time-differential perturbed angular distribution method. This state is the bandhead of the positive-parity chiral rotational band, which emerges when an unpaired proton, an unpaired neutron hole, and an even-even core are coupled such that their angular momentum vectors are aplanar (chiral configuration). g-factor measurements can give important information on the relative orientation of the three angular momentum vectors. The measured g factor g=+0.59(1) shows that there is an important contribution of the core rotation in the total angular momentum of the isomeric state. Moreover, a quantitative theoretical analysis supports the conclusion that the three angular momentum vectors lie almost in one plane, which suggests that the chiral configuration in ^{128}Cs demonstrated in previous works by characteristic patterns of electromagnetic transitions appears only above some value of the total nuclear spin.

2.
Phys Rev Lett ; 97(17): 172501, 2006 Oct 27.
Article in English | MEDLINE | ID: mdl-17155467

ABSTRACT

The results of the Doppler-shift attenuation method lifetime measurements in partner bands of 128Cs and 132La are presented. Experimental reduced transition probabilities in 128Cs are compared with theoretical calculations done in the frame of the core-quasiparticle coupling model. The electromagnetic properties, energy and spin of levels belonging to the partner bands show that 128Cs is the best known example revealing the chiral symmetry breaking phenomenon.

SELECTION OF CITATIONS
SEARCH DETAIL
...