Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Mol Sci ; 22(24)2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34947972

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor five-year survival rate of less than 10%. Immune suppression along with chemoresistance are obstacles for PDAC therapeutic treatment. Innate immune cells, such as tumor-associated macrophages, are recruited to the inflammatory environment of PDAC and adversely suppress cytotoxic T lymphocytes. KRAS and MYC are important oncogenes associated with immune suppression and pose a challenge to successful therapies. Here, we targeted KRAS, through inhibition of downstream c-RAF with GW5074, and MYC expression via difluoromethylornithine (DFMO). DFMO alone and with GW5074 reduced in vitro PDAC cell viability. Both DFMO and GW5074 showed efficacy in reducing in vivo PDAC growth in an immunocompromised model. Results in immunocompetent syngeneic tumor-bearing mice showed that DFMO and combination treatment markedly decreased tumor size, but only DFMO increased survival in mice. To further investigate, immunohistochemical staining showed DFMO diminished MYC expression and increased tumor infiltration of macrophages, CD86+ cells, CD4+ and CD8+ T lymphocytes. GW5074 was not as effective in modulating the tumor infiltration of total CD3+ lymphocytes or tumor progression and maintained MYC expression. Collectively, this study highlights that in contrast to GW5074, the inhibition of MYC through DFMO may be an effective treatment modality to modulate PDAC immunosuppression.


Subject(s)
Carcinoma, Pancreatic Ductal/drug therapy , Eflornithine/administration & dosage , Indoles/administration & dosage , Pancreatic Neoplasms/drug therapy , Phenols/administration & dosage , Animals , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Down-Regulation , Drug Synergism , Eflornithine/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunocompetence/drug effects , Immunocompromised Host/drug effects , Indoles/pharmacology , Mice , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Phenols/pharmacology , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Treatment Outcome , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
2.
Adv Nutr ; 11(1): 77-91, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31268137

ABSTRACT

The intestinal tract is the largest barrier between a person and the environment. In this role, the intestinal tract is responsible not only for absorbing essential dietary nutrients, but also for protecting the host from a variety of ingested toxins and microbes. The intestinal barrier system is composed of a mucus layer, intestinal epithelial cells (IECs), tight junctions (TJs), immune cells, and a gut microbiota, which are all susceptible to external factors such as dietary fats. When components of this barrier system are disrupted, intestinal permeability to luminal contents increases, which is implicated in intestinal pathologies such as inflammatory bowel disease, necrotizing enterocolitis, and celiac disease. Currently, there is mounting evidence that consumption of excess dietary fats can enhance intestinal permeability differentially. For example, dietary fat modulates the expression and distribution of TJs, stimulates a shift to barrier-disrupting hydrophobic bile acids, and even induces IEC oxidative stress and apoptosis. In addition, a high-fat diet (HFD) enhances intestinal permeability directly by stimulating proinflammatory signaling cascades and indirectly via increasing barrier-disrupting cytokines [TNFα, interleukin (IL) 1B, IL6, and interferon γ (IFNγ)] and decreasing barrier-forming cytokines (IL10, IL17, and IL22). Finally, an HFD negatively modulates the intestinal mucus composition and enriches the gut microflora with barrier-disrupting species. Although further research is necessary to understand the precise role HFDs play in intestinal permeability, current data suggest a stronger link between diet and intestinal disease than was first thought to exist. Therefore, this review seeks to highlight the various ways an HFD disrupts the gut barrier system and its many implications in human health.


Subject(s)
Cytokines/metabolism , Diet, High-Fat/adverse effects , Dietary Fats/adverse effects , Gastrointestinal Microbiome/drug effects , Inflammation/etiology , Intestinal Mucosa/drug effects , Tight Junctions/drug effects , Animals , Bile Acids and Salts/metabolism , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/microbiology , Humans , Inflammation/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Mucus/metabolism , Permeability
SELECTION OF CITATIONS
SEARCH DETAIL
...