Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36676622

ABSTRACT

Avoiding loose powders and resins, material extrusion additive manufacturing is a powerful technique to produce near-net shape parts, being a cheap and safe alternative for developing complex industrial-grade products. Filaments embedded with a high packing density of metallic or ceramic granules are being increasingly used, resulting in almost fully dense parts, whereby geometries are shaped, debinded and sintered sequentially until the completion of the part. Traditionally, "brown" debinded geometries are transported to conventional furnaces to densify the powder compacts, requiring careful tailoring of the heating profiles and sintering environment. This approach is decoupled and often involves time-consuming post-processing, whereby after the completion of the shaping and debinding steps, the parts need to be transported to a sintering furnace. Here, it is shown that sintering via indirect induction heating of a highly filled commercially available filament embedded with stainless steel 316L powder can be an effective route to densify Fused Filament Fabricated (FFF) parts. The results show that densities of 99.8% can be reached with very short soaking times, representing a significant improvement compared to prior methods. A hybrid machine is proposed, whereby a custom-built machine is integrated with an induction heater to combine FFF with local indirect induction sintering. Sintering in situ, without the need for part transportation, simplifies the processing of metal parts produced through material extrusion additive manufacturing.

2.
Swiss Med Wkly ; 151: w20519, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34233010

ABSTRACT

AIMS OF THE STUDY: To develop a screening tool to optimise neonatal drug prescription, which is often based on low-quality evidence. METHODS: Neonatal pharmacotherapy recommendations were identified by literature review and synthesised into NeoCheck tool statements. In a two-round modified Delphi process, experts from Swiss neonatal intensive care units (NICUs) rated their agreement with individual statements using a five-point Likert scale (5 = totally agree). Statements with >65% scores ≥4 in round 1 and >75% scores ≥4 in round 2 were selected. RESULTS: We identified 1375 clinical guidelines via literature review. After synthesis, 158 statements were submitted to 23 experts (1 clinical pharmacist, 22 neonatologists; 65% with >10 years neonatology practice) from 10 Swiss NICUs. Nineteen items did not reach the agreement threshold and were eliminated in the second Delphi round. The final NeoCheck tool comprises 141 statements in 11 medical domains concerning 49 neonatal diseases. Most (79%) statements concern all neonates, 13% concern preterm (<37 weeks gestational age) infants and 3% concern very preterm (<32 weeks gestational age) infants CONCLUSIONS: NeoCheck is the first prescription-screening tool developed to optimise neonatal pharmacotherapy. In a future prospective study, its effect on NICU prescription optimisation and the quality of care will be assessed.


Subject(s)
Intensive Care Units, Neonatal , Prescriptions , Gestational Age , Humans , Infant , Infant, Newborn , Prospective Studies , Research
3.
AMB Express ; 11(1): 48, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33765268

ABSTRACT

The production of peptides as active pharmaceutical ingredients (APIs) by recombinant technologies is of emerging interest. A reliable production platform, however, is still missing due the inherent characteristics of peptides such as proteolytic sensitivity, aggregation and cytotoxicity. We have developed a new technology named Numaswitch solving present limitations. Numaswitch was successfully employed for the production of diverse peptides and small proteins varying in length, physicochemical and functional characteristics, including Teriparatide, Linaclotide, human ß-amyloid and Serum amyloid A3. Additionally, the potential of Numaswitch for a cost-efficient commercial production is demonstrated yielding > 2 g Teriparatide per liter fermentation broth in a quality meeting API standard.

4.
Trends Biotechnol ; 39(9): 875-889, 2021 09.
Article in English | MEDLINE | ID: mdl-33468423

ABSTRACT

Recently, several studies have proven the potential of cyanobacteria as whole-cell biocatalysts for biotransformation. Compared to heterotrophic hosts, cyanobacteria show unique advantages thanks to their photoautotrophic metabolism. Their ability to use light as energy and CO2 as carbon source promises a truly sustainable production platform. Their photoautotrophic metabolism offers an encouraging source of reducing power, which makes them attractive for redox-based biotechnological purposes. To exploit the full potential of these whole-cell biocatalysts, cyanobacterial cells must be considered in their entirety. With this emphasis, this review summarizes the latest developments in cyanobacteria research with a strong focus on the benefits associated with their unique metabolism. Remaining bottlenecks and recent strategies to overcome them are evaluated for their potential in future applications.


Subject(s)
Biocatalysis , Biotechnology , Cyanobacteria , Biotechnology/trends , Biotransformation , Cyanobacteria/metabolism , Photosynthesis , Research/trends
5.
PLoS One ; 13(7): e0200160, 2018.
Article in English | MEDLINE | ID: mdl-29969500

ABSTRACT

Land plants are engaged in intricate communities with soil bacteria and fungi indispensable for plant survival and growth. The plant-microbial interactions are largely governed by specific metabolites. We employed a combination of lipid-fingerprinting, enzyme activity assays, high-throughput DNA sequencing and isolation of cultivable microorganisms to uncover the dynamics of the bacterial and fungal community structures in the soil after exposure to isothiocyanates (ITC) obtained from rapeseed glucosinolates. Rapeseed-derived ITCs, including the cyclic, stable goitrin, are secondary metabolites with strong allelopathic affects against other plants, fungi and nematodes, and in addition can represent a health risk for human and animals. However, the effects of ITC application on the different bacterial and fungal organisms in soil are not known in detail. ITCs diminished the diversity of bacteria and fungi. After exposure, only few bacterial taxa of the Gammaproteobacteria, Bacteriodetes and Acidobacteria proliferated while Trichosporon (Zygomycota) dominated the fungal soil community. Many surviving microorganisms in ITC-treated soil where previously shown to harbor plant growth promoting properties. Cultivable fungi and bacteria were isolated from treated soils. A large number of cultivable microbial strains was capable of mobilizing soluble phosphate from insoluble calcium phosphate, and their application to Arabidopsis plants resulted in increased biomass production, thus revealing growth promoting activities. Therefore, inclusion of rapeseed-derived glucosinolates during biofumigation causes losses of microbiota, but also results in enrichment with ITC-tolerant plant microorganisms, a number of which show growth promoting activities, suggesting that Brassicaceae plants can shape soil microbiota community structure favoring bacteria and fungi beneficial for Brassica plants.


Subject(s)
Brassica rapa/metabolism , Glucosinolates/metabolism , Microbiota , Soil Microbiology , Cell Culture Techniques , Coumaric Acids/metabolism , Glycoside Hydrolases/metabolism , Microbiota/physiology , Oxazolidinones/metabolism , Phospholipids/analysis , Soil/chemistry
6.
Electrophoresis ; 24(21): 3689-93, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14613194

ABSTRACT

UV-initiated grafting of plastic tubes and microfluidic chips with ethylene diacrylate followed by the preparation of porous polymer monoliths has been studied. The first step affords a thin grafted layer of polymer with a multiplicity of pendent double bonds that are then used in the second step for covalent attachment of the monolith to the wall. As clearly seen on scanning electron micrographs, this procedure prevents the formation of voids at the monolith-channel interface a problem that has always plagued approaches involving bulk polymerization in nontreated channels due to the shrinkage of the monolith during the polymerization process and its lack of compatibility with the material of the device. Irradiation with UV light through a photomask allows precise patterning specifying both the area subjected to surface modification and the location of the monolith within specific areas of the device.


Subject(s)
Miniaturization/methods , Plastics , Microfluidics/methods , Microscopy, Electron, Scanning , Molecular Probe Techniques , Polymers
7.
J Am Chem Soc ; 125(44): 13415-26, 2003 Nov 05.
Article in English | MEDLINE | ID: mdl-14583037

ABSTRACT

A novel SUcrose-Based Polymer support (SUBPOL) with tailored morphology suitable for the use in solid-phase peptide synthesis (SPPS) is described, and its application as a hydrophilic affinity matrix for the specific removal of fibrinogen from human plasma is demonstrated. After suspension polymerization of partly methacrylated 2,1':4,6-di-O-isopropylidene sucrose and subsequent removal of the protecting groups, hydrophilic spherical polymer beads were obtained. The morphology of the resulting resin was controlled by variation of the porogen as well as the average degree of substitution with respect to the methacryloyl groups of the monomer mixture. After introduction of amino groups for a permanent attachment of immobilized peptide ligands, prevention of unintended esterification during SPPS was achieved by silylation of remaining hydroxy groups. Alternatively, a Rink amide linker was introduced prior to SPPS to allow cleavage and subsequent analysis of the peptide assembled on the SUBPOL resins. Two hexapeptides of sequence kwiivw and hffflw, consisting of d-amino acids, as well as a 19-mer peptide corresponding to the sequence GSGVRGDFGSLAPRVARQL of the VP1 protein from the foot-and-mouse disease virus (FMDV) were successfully prepared both manually or in a semi-automated process on SUBPOL resins according to the Fmoc/tBu strategy. Yields and purities were comparable to peptides prepared on commercially available polystyrene resins. A specific affinity adsorbent containing the fibrinogen-binding pentapeptide GPRPK was prepared by SPPS on SUBPOL resins of different morphology, and the strong impact of the affinity matrix on adsorption performance was demonstrated.


Subject(s)
Chromatography, Affinity/methods , Peptides/chemical synthesis , Polymethacrylic Acids/chemistry , Sucrose/analogs & derivatives , Amino Acid Sequence , Capsid Proteins/chemical synthesis , Fibrinogen/isolation & purification , Humans , Molecular Sequence Data , Peptide Fragments/chemical synthesis , Polymethacrylic Acids/chemical synthesis , Sucrose/chemistry
8.
Anal Chem ; 75(4): 1011-21, 2003 Feb 15.
Article in English | MEDLINE | ID: mdl-12622399

ABSTRACT

The effect of variables such as shape template size, porogen composition and percentage, content of cross-linking monomer, and polymerization temperature on the properties of uniformly sized 3-microm porous poly(glycidyl methacrylate-co-ethylene dimethacrylate) beads prepared by the staged templated suspension polymerization technique has been studied. The porous properties of the beads including surface morphology, pore size distribution, and specific surface area have been optimized to obtain highly efficient stationary phases for normal-phase HPLC. A column packed with diol stationary phase obtained by hydrolysis of poly(glycidyl methacrylate-co-ethylene dimethacrylate) beads affords an efficiency of 67,000 plates/m for toluene using THF as the mobile phase. The retention properties and selectivity of the diol beads are easily modulated by changes in the composition of the mobile phase. The performance of these beads is demonstrated with the separations of a variety of polar compounds including positional isomers, aniline derivatives, and basic tricyclic antidepressant drugs.


Subject(s)
Chromatography, High Pressure Liquid/methods , Polymethacrylic Acids/chemistry , Resins, Synthetic/chemistry , Aniline Compounds/analysis , Aniline Compounds/isolation & purification , Antidepressive Agents, Tricyclic/analysis , Antidepressive Agents, Tricyclic/isolation & purification , Porosity
9.
Anal Chem ; 75(20): 5328-35, 2003 Oct 15.
Article in English | MEDLINE | ID: mdl-14710809

ABSTRACT

Microfluidic devices with a dual function containing both a solid-phase extractor and an enzymatic microreactor have been prepared, and their operation has been demonstrated. The devices were fabricated from a 25-mm-long porous poly(butyl methacrylate-co-ethylene dimethacrylate) monolith prepared within a 50-microm-i.d. capillary. This capillary with a pulled 9-12-microm needle tip was used as a nanoelectrospray emitter coupling the device to a mass spectrometer. Photografting with irradiation through a mask was then used to selectively functionalize a 20-mm-long portion of the monolith, introducing reactive poly(2-vinyl-4,4-dimethylazlactone) chains to enable the subsequent attachment of trypsin, thereby creating an enzymatic microreactor with high proteolytic activity. The other 5 mm of unmodified hydrophobic monolith served as micro solid-phase extractor (microSPE). The dual-function devices were used in two different flow directions; concentration of myoglobin that was absorbed from its dilute solution, followed by elution and digestion or digestion, followed by concentration. Operations in both directions afforded equal sequence coverage. Different volumes of myoglobin solution ranging from 2 to 20 microL were loaded on the device. Very high sequence coverages of almost 80% were achieved for the highest loading. Despite the very short length of the extractor unit, the device operated in the digest-solid-phase extraction direction also enabled the separation of peaks that mostly contained undigested protein and peptides.


Subject(s)
Chromatography, Liquid/instrumentation , Enzymes, Immobilized/chemistry , Microchemistry/instrumentation , Peptide Mapping/instrumentation , Spectrometry, Mass, Electrospray Ionization/methods , Boron Compounds/chemistry , Caseins/chemistry , Caseins/metabolism , Enzymes, Immobilized/metabolism , Kinetics , Methacrylates/chemistry , Microchemistry/methods , Microfluidics/instrumentation , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Myoglobin/chemistry , Myoglobin/metabolism , Peptide Fragments/analysis , Peptide Mapping/methods , Photochemistry , Polymers/chemistry , Proteins/chemistry , Proteins/metabolism , Temperature , Trypsin/chemistry , Trypsin/metabolism
10.
Anal Chem ; 74(16): 4081-8, 2002 Aug 15.
Article in English | MEDLINE | ID: mdl-12199578

ABSTRACT

Enzymatic microreactors have been prepared in capillaries and on microfluidic chips by immobilizing trypsin on porous polymer monoliths consisting of 2-vinyl-4,4-dimethylazlactone, ethylene dimethacrylate, and acrylamide or 2-hydroxyethyl methacrylate. The azlactone functionalities react readily with amine and thiol groups of the enzyme to form stable covalent bonds. The optimized porous properties of the monoliths lead to very low back pressures enabling the use of simple mechanical pumping to carry out both the immobilization of the enzyme from its solution and the subsequent analyses of substrate solutions. The Michealis-Menten kinetic characteristics of the reactors were probed using a low molecular weight substrate: N-alpha-benzoyl-L-arginine ethyl ester. The effects of immobilization variables such as the concentration of trypsin in solution and percentage of azlactone functionalities in the monolith, as well as the effect of reaction time on the enzymatic activity, and of process variables such as substrate flow velocity and residence time in the reactor, were studied in detail. The proteolytic activity of the enzymatic microreactor on chip was demonstrated at different flow rates with the cleavage of fluorescently labeled casein used as a substrate. The excellent performance of the monolithic microreactor was also demonstrated with the digestion of myoglobin at the fast flow rate of 0.5 microL/min, which affords a residence time of only 11.7 s. The digest was then characterized using MALDI-TOF MS, and 102 out of 153 possible peptide fragments were identified giving a sequence coverage of 67%.


Subject(s)
Enzymes, Immobilized/metabolism , Peptide Mapping/methods , Animals , Humans , Microchemistry/instrumentation , Microchemistry/methods , Miniaturization , Myoglobin/analysis , Myoglobin/metabolism , Peptide Mapping/instrumentation , Polymers/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Surface Properties , Trypsin/metabolism
11.
Am J Bot ; 89(5): 727-33, 2002 May.
Article in English | MEDLINE | ID: mdl-21665672

ABSTRACT

Although intracellular associations with mycorrhizal fungi are known for Ginkgo biloba, no other endosymbiotic relationships have ever been reported for this "living fossil." A protoplast culture derived from haploid explants has now revealed the existence of a green alga in vitro, whose eukaryotic status was confirmed by transmission electron microscopic studies. Phylogenetic 18S rDNA sequence analyses showed this alga to be closely related to the lichen photobiont Coccomyxa. Algae, which in host cells exist as more or less undifferentiated "precursor" forms, proliferated within necrosing G. biloba cells of a subculture derived from a zygotic embryo and were finally released into the medium. Light and electron microscopic observations showed that G. biloba cells rapidly filled up with countless green particles whose number increased up to the bursting of the hypertrophic host cells. At the beginning of reproduction no algae were visible in the nutritive medium, demonstrating that the proliferation started inside the G. biloba cells and excluding the possibility of an exogenous contamination. Occasionally, mature algae together with their precursor forms were detected by transmission electron microscopy in intact host cells of a green callus. The algae were easily identified by their similarity to the cultured algae. Eukaryotic algae have never been reported to date to reside inside higher plant cells, whereas several algal associations are well known from the animal kingdom.

12.
J Proteome Res ; 1(6): 563-8, 2002.
Article in English | MEDLINE | ID: mdl-12645625

ABSTRACT

An enzymatic microreactor with a volume of 470 nL has been prepared by immobilizing trypsin on a 10 cm long reactive porous polymer monolith located in a 100 microm i.d. fused silica capillary. This reactor affords suitable degrees of digestion of proteins even after very short residence times of less than 1 min. The performance is demonstrated with the digestion of eight proteins ranging in molecular mass from 2848 to 77 754. The digests were analyzed using mass spectrometry in two modes: off-line MALDI and in-line nanoelectrospray ionization. The large numbers of identified peptides enable a high degree of sequence coverage and positive identification of the proteins. The extent of sequence coverage decreases as the molecular mass of the digested protein increases.


Subject(s)
Peptide Mapping/methods , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Trypsin/metabolism , Proteins/analysis , Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...