Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 12(550)2020 07 01.
Article in English | MEDLINE | ID: mdl-32611681

ABSTRACT

Circulating RNA (C-RNA) is continually released into the bloodstream from tissues throughout the body, offering an opportunity to noninvasively monitor all aspects of pregnancy health from conception to birth. We asked whether C-RNA analysis could robustly detect aberrations in patients diagnosed with preeclampsia (PE), a prevalent and potentially fatal pregnancy complication. As an initial examination, we sequenced the circulating transcriptome from 40 pregnancies at the time of severe, early-onset PE diagnosis and 73 gestational age-matched controls. Differential expression analysis identified 30 transcripts with gene ontology annotations and tissue expression patterns consistent with the placental dysfunction, impaired fetal development, and maternal immune and cardiovascular system dysregulation characteristic of PE. Furthermore, machine learning identified combinations of 49 C-RNA transcripts that classified an independent cohort of patients (early-onset PE, n = 12; control, n = 12) with 85 to 89% accuracy. C-RNA may thus hold promise for improving the diagnosis and identification of at-risk pregnancies.


Subject(s)
Placenta Diseases , Pre-Eclampsia , Case-Control Studies , Female , Gestational Age , Humans , Placenta , Pre-Eclampsia/diagnosis , Pre-Eclampsia/genetics , Pregnancy , Pregnancy Trimester, Third
2.
Proc Natl Acad Sci U S A ; 115(42): 10804-10809, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30262650

ABSTRACT

Somatic copy number variations (CNVs) exist in the brain, but their genesis, prevalence, forms, and biological impact remain unclear, even within experimentally tractable animal models. We combined a transposase-based amplification (TbA) methodology for single-cell whole-genome sequencing with a bioinformatic approach for filtering unreliable CNVs (FUnC), developed from machine learning trained on lymphocyte V(D)J recombination. TbA-FUnC offered superior genomic coverage and removed >90% of false-positive CNV calls, allowing extensive examination of submegabase CNVs from over 500 cells throughout the neurogenic period of cerebral cortical development in Mus musculus Thousands of previously undocumented CNVs were identified. Half were less than 1 Mb in size, with deletions 4× more common than amplification events, and were randomly distributed throughout the genome. However, CNV prevalence during embryonic cortical development was nonrandom, peaking at midneurogenesis with levels triple those found at younger ages before falling to intermediate quantities. These data identify pervasive small and large CNVs as early contributors to neural genomic mosaicism, producing genomically diverse cellular building blocks that form the highly organized, mature brain.


Subject(s)
Cerebral Cortex/cytology , Cerebral Cortex/metabolism , DNA Copy Number Variations , Gene Expression Regulation, Developmental , Neurogenesis/genetics , Single-Cell Analysis/methods , Whole Genome Sequencing/methods , Animals , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Genome , Genomics , Mice , Mice, Inbred C57BL
3.
Dev Neurobiol ; 78(11): 1026-1048, 2018 11.
Article in English | MEDLINE | ID: mdl-30027562

ABSTRACT

Since the discovery of DNA, the normal developing and functioning brain has been assumed to be composed of cells with identical genomes, which remains the dominant view even today. However, this pervasive assumption is incorrect, as proven by increasing numbers of reports within the last 20 years that have identified multiple forms of somatically produced genomic mosaicism (GM), wherein brain cells-especially neurons-from a single individual show diverse alterations in DNA, distinct from the germline. Critically, these changes alter the actual DNA nucleotide sequences-in contrast to epigenetic mechanisms-and almost certainly contribute to the remarkably diverse phenotypes of single brain cells, including single-cell transcriptomic profiles. Here, we review the history of GM within the normal brain, including its major forms, initiating mechanisms, and possible functions. GM forms include aneuploidies and aneusomies, smaller copy number variations (CNVs), long interspersed nuclear element type 1 (LINE1) repeat elements, and single nucleotide variations (SNVs), as well as DNA content variation (DCV) that reflects all forms of GM with greatest coverage of large, brain cell populations. In addition, technical considerations are examined, along with relationships among GM forms and multiple brain diseases. GM affecting genes and loci within the brain contrast with current neural discovery approaches that rely on sequencing nonbrain DNA (e.g., genome-wide association studies (GWAS)). Increasing knowledge of neural GM has implications for mechanisms of development, diversity, and function, as well as understanding diseases, particularly considering the overwhelming prevalence of sporadic brain diseases that are unlinked to germline mutations. © 2018 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol, 2018.


Subject(s)
Brain/growth & development , DNA Copy Number Variations/genetics , Long Interspersed Nucleotide Elements/genetics , Mosaicism , Animals , Genome-Wide Association Study , Genomics , Humans
4.
Article in English | MEDLINE | ID: mdl-25271107

ABSTRACT

Sarcoplasmic calcium binding protein (SCP) is a high-affinity calcium buffering protein expressed in muscle of crayfish and other invertebrates. In previous work, we identified three splice variants of Procambarus clarkii SCP (pcSCP1a, pcSCP1b, and pcSCP1c) that differ in a 37 amino acid region that lies mainly between the 2nd and 3ed EF-hand calcium binding domain. To evaluate the function of the proteins encoded by the pcSCP1 transcripts, we produced recombinant pcSCP1 and used tryptophan fluorescence to characterize calcium binding. Tryptophan fluorescence of pcSCP1a decreased in response to increased calcium, while tryptophan fluorescence of the pcSCP1b and pcSCP1c variants increased. We estimated calcium binding constants and Hill coefficients with two different equations: the standard Hill equation and a modified Hill equation that accounts for contributions from two different tryptophans. The approaches gave similar results. Steady-state calcium binding constants (Kd) ranged from 2.7±0.7×10(-8)M to 5.6±0.1×10(-7)M, consistent with previous work. Variants displayed significantly different apparent calcium affinities, which were decreased in the presence of magnesium. Calcium Kd was lowest for pcSCP1a and highest for pcSCP1c. Site-directed mutagenesis of pcSCP1c residues to the amino acids of pcSCP1b decreased the calcium Kd, identifying residues outside the EF-hand domains that contribute to calcium binding in crayfish SCP.


Subject(s)
Astacoidea/metabolism , Calcium-Binding Proteins/metabolism , Calcium/metabolism , Sarcoplasmic Reticulum/metabolism , Animals , Calcium-Binding Proteins/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Splicing , Sarcoplasmic Reticulum/genetics
5.
Article in English | MEDLINE | ID: mdl-21530674

ABSTRACT

Sarcoplasmic calcium binding protein (SCP) is an invertebrate EF-hand calcium buffering protein that has been proposed to fulfill a similar function in muscle relaxation as vertebrate parvalbumin. We have identified three SCP variants in the freshwater crayfish Procambarus clarkii. The variants (pcSCP1a, pcSCP1b, and pcSCP1c) differ across a 37 amino acid region that lies mainly between the second and third EF-hand calcium binding domains. We evaluated tissue distribution and response of the variants to cold exposure, a stress known to affect expression of parvalbumin. Expression patterns of the variants were not different and therefore do not provide a functional rationale for the polymorphism of pcSCP1. Compared to hepatopancreas, expression of pcSCP1 variants was 100,000-fold greater in axial abdominal muscle and 10-fold greater in cardiac muscle. Expression was 10-100 greater in fast-twitch deep flexor and extensor muscles compared to slow-twitch superficial flexor and extensors. In axial muscle, no significant changes of pcSCP1, calmodulin (CaM), or sarcoplasmic/endoplasmic reticulum Ca-ATPase (SERCA) expression were measured after one week of 4°C exposure. In contrast, large decreases of pcSCP1 were measured in cardiac muscle, with no changes in CaM or SERCA. Knockdown of pcSCP1 by dsRNA led to reduced muscle activity and decreased expression of SERCA. In summary, the pattern of pcSCP1 tissue expression is similar to parvalbumin, supporting a role in muscle contraction. However, the response of pcSCP1 to cold exposure differs from parvalbumin, suggesting possible functional divergence between the two proteins.


Subject(s)
Astacoidea/metabolism , Calcium-Binding Proteins/metabolism , Calcium/metabolism , Protein Isoforms/metabolism , Sarcoplasmic Reticulum/metabolism , Amino Acid Sequence , Animals , Astacoidea/genetics , Calcium-Binding Proteins/genetics , Cold Temperature , Female , Male , Molecular Sequence Data , Polymorphism, Genetic , Protein Isoforms/genetics , RNA Interference , Sequence Alignment , Tissue Distribution
6.
Biochem Biophys Res Commun ; 406(1): 47-52, 2011 Mar 04.
Article in English | MEDLINE | ID: mdl-21291865

ABSTRACT

Adenosine-regulated glutamate signaling in astrocytes is implicated in many neurological and neuropsychiatric disorders. In this study, we examined whether adenosine A1 receptor regulates EAAT2 expression in astrocytes using pharmacological agents and siRNAs. We found that adenosine A1 receptor-specific antagonist DPCPX or PSB36 decreased EAAT2 expression in a dose-dependent manner. Consistently, knockdown of A1 receptor in astrocytes decreased EAAT2 mRNA expression while overexpression of A1 receptor upregulated EAAT2 expression and function. Since A1 receptor activation is mainly coupled to inhibitory G-proteins and inhibits the activity of adenylate cyclase, we investigated the effect of forskolin, which activates adenylate cyclase activity, on EAAT2 mRNA levels. Interestingly, we found that forskolin reduced EAAT2 expression in dose- and time-dependent manners. In contrast, adenylate cyclase inhibitor SQ22536 increased EAAT2 expression in dose- and time-dependent manners. In addition, forskolin blocked ethanol-induced EAAT2 upregulation. Taken together, these results suggest that A1 receptor-mediated signaling regulates EAAT2 expression in astrocytes.


Subject(s)
Astrocytes/drug effects , Ethanol/toxicity , Excitatory Amino Acid Transporter 2/biosynthesis , Receptor, Adenosine A1/metabolism , Adenylyl Cyclases/metabolism , Alcoholism/genetics , Alcoholism/metabolism , Animals , Astrocytes/metabolism , Colforsin/pharmacology , Equilibrative Nucleoside Transporter 1/genetics , Excitatory Amino Acid Transporter 2/genetics , Gene Knockdown Techniques , Mice , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Receptor, Adenosine A1/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...