Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Neuropharmacology ; 63(6): 1051-63, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22796107

ABSTRACT

Estrogen acts through two molecularly distinct receptors termed estrogen receptor alpha (ERα) and estrogen receptor beta (ERß) which bind estradiol with similar affinities and mediate the effects of estrogen throughout the body. ERα plays a major role in reproductive physiology and behavior, and mediates classic estrogen signaling in such tissues as the uterus, mammary gland, and skeleton. ERß, however, modulates estrogen signaling in the ovary, the immune system, prostate, gastrointestinal tract, and hypothalamus, and there is some evidence that ERß can regulate ERα activity. Moreover, ERß knockout studies and receptor distribution analyses in the CNS suggest that this receptor may play a role in the modulation of mood and cognition. In recent years several ERß-specific compounds (selective estrogen receptor beta modulators; SERM-beta) have become available, and research suggests potential utility of these compounds in menopausal symptom relief, breast cancer prevention, diseases that have an inflammatory component, osteoporosis, cardiovascular disease, and inflammatory bowel disease, as well as modulation of mood, and anxiety. Here we demonstrate an antidepressant-like effect obtained using two SERM-beta compounds, SERM-beta1 and SERM-beta2. These compounds exhibit full agonist activity at ERß in a cell based estrogen response element (ERE) transactivation assay. SERM-beta1 and 2 are non-proliferative with respect to breast as determined using the MCF-7 breast cancer cell-based assay and non-proliferative in the uterus as determined by assessing the effects of SERM-beta compounds on immature rat uterine weight and murine uterine weight. In vivo SERM-beta1 and 2 are brain penetrant and display dose dependent efficacy in the murine dorsal raphe assays for induction of tryptophan hydroxylase mRNA and progesterone receptor protein. These compounds show activity in the murine forced swim test and promote hippocampal neurogenesis acutely in rats. Taken together these data suggest that ERß may play an important role in modulating mood and the ERß specific compounds described herein will be useful tools for probing the utility of an ERß agonist for treating neuroendocrine-related mood disturbance and menopausal symptoms.


Subject(s)
Antidepressive Agents , Estrogen Receptor beta/drug effects , RNA, Messenger/biosynthesis , Raphe Nuclei/enzymology , Selective Estrogen Receptor Modulators/pharmacology , Swimming/psychology , Tryptophan Hydroxylase/biosynthesis , Animals , Blood-Brain Barrier/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , DNA/genetics , Dose-Response Relationship, Drug , Estrogen Receptor alpha/drug effects , Female , Hippocampus/drug effects , Hippocampus/growth & development , Humans , Immunohistochemistry , In Situ Hybridization , Neurogenesis/drug effects , Organ Size/drug effects , Plasmids/genetics , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Receptors, Androgen/metabolism , Receptors, Progesterone/metabolism , Transcriptional Activation/drug effects , Tryptophan Hydroxylase/genetics , Uterus/anatomy & histology , Uterus/physiology
2.
Bioorg Med Chem Lett ; 16(15): 3896-901, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16730987

ABSTRACT

Synthesis of a series of fused pyrazole tetrahydrofluorenone analogs which are potent, ERbeta subtype selective ligands is described. Analogs possessing subnanomolar ERbeta binding, greater than 100-fold ERbeta-selectivity, and oral bioavailability are reported.


Subject(s)
Estrogen Receptor beta/drug effects , Fluorenes/chemistry , Pyrazoles/chemistry , Animals , Area Under Curve , Biological Availability , Cyclization , Estrogen Receptor beta/metabolism , Fluorenes/blood , Fluorenes/metabolism , Rats
3.
Bioorg Med Chem Lett ; 16(13): 3489-94, 2006 Jul 01.
Article in English | MEDLINE | ID: mdl-16632357

ABSTRACT

Synthesis and derivatization of a series of substituted tetrahydrofluorenone analogs giving potent, ERbeta subtype selective ligands are described. Several analogs possessing ERbeta binding affinities comparable to 17beta-estradiol but with greater than 75-fold selectivity over ERalpha are reported.


Subject(s)
Estrogen Receptor beta/drug effects , Fluorenes/chemical synthesis , Fluorenes/pharmacology , Cell Line , Crystallography, X-Ray , Estrogen Receptor alpha/chemistry , Estrogen Receptor alpha/drug effects , Estrogen Receptor beta/chemistry , Fluorenes/classification , Humans , Ligands , Models, Molecular , Molecular Structure , Stereoisomerism , Structure-Activity Relationship
4.
J Mol Endocrinol ; 32(3): 987-95, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15171727

ABSTRACT

The effects of estrogen receptor (ER) ligands on the stability and transcriptional activity of ERbeta in the breast cancer cell lines MCF-7 and HeLa were examined. We found that ERbeta was degraded in the presence of 17beta-estradiol. Tamoxifen and Faslodex (ICI 182,780) prevented ERbeta receptor destabilization. In contrast to ERalpha, ERbeta degradation was not abolished by inhibitors of the proteasome-mediated protein degradation pathway. Furthermore, single point mutations in helix 12 of the receptor dramatically affected the stability and subsequent transcriptional activation of ERbeta.


Subject(s)
Acetylcysteine/analogs & derivatives , Breast Neoplasms/metabolism , Estradiol/analogs & derivatives , Estradiol/metabolism , Estrogen Antagonists/metabolism , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Acetylcysteine/metabolism , Animals , Cell Line, Tumor , Cysteine Proteinase Inhibitors/metabolism , Estradiol/pharmacology , Estrogen Receptor alpha/chemistry , Estrogen Receptor alpha/genetics , Estrogen Receptor beta/chemistry , Estrogen Receptor beta/genetics , Female , Fulvestrant , Gene Expression Regulation , Genes, Reporter , Humans , Ligands , Point Mutation , Tamoxifen/metabolism
5.
J Endocrinol ; 177(2): 279-86, 2003 May.
Article in English | MEDLINE | ID: mdl-12740016

ABSTRACT

Somatostatin (SRIH) functions as an endocrine mediator in processes such as growth, immune resistance and reproduction. Five SRIH receptors (sstr1-5) have been identified in mammals, where they are expressed in both the brain and peripheral tIssues. To study the specific function of each receptor subtype, specific agonists (ag1-5) have been synthesized. The high degree of homology between mammalian and avian SRIH receptors suggests that these agonists might also be used in chickens. In this paper we describe two in vitro protocols (static incubation and perifusion system) to identify the SRIH receptors controlling the secretion of GH and TSH from the chicken pituitary. We found that basal GH or TSH secretion were never affected when SRIH or an agonist (1 microM) were added. SRIH diminished the GH as well as the TSH response to TSH-releasing hormone (TRH; 100 nM) in both systems. Our results have indicated that the SRIH actions at the level of the pituitary are regulated through specific receptor subtypes. In both the static and flow incubations, ag2 lowered the GH response to TRH, whereas stimulated TSH release was diminished by both ag2 and ag5. Ag3 and ag4 tended to increase rather than decrease the responsiveness of both pituitary cell types to TRH in perifusion studies. Our data have indicated that SRIH inhibits chicken pituitary function through sstr2 and sstr5. Only sstr2 seems to be involved in the control of chicken GH release, whereas both sstr2 and sstr5 inhibit induced GH secretion in mammals. The possible stimulatory action of ag3 and ag4 may point towards a species-specific function of sstr3 and sstr4.


Subject(s)
Chickens/metabolism , Growth Hormone/metabolism , Pituitary Gland/metabolism , Receptors, Somatostatin/metabolism , Somatostatin/pharmacology , Thyrotropin/metabolism , Amides/pharmacology , Animals , Indoles/pharmacology , Naphthalenes/pharmacology , Nitrobenzenes/pharmacology , Organ Culture Techniques/methods , Perfusion , Pituitary Gland/drug effects , Pyridines/pharmacology , Radioimmunoassay/methods , Somatostatin/analogs & derivatives , Stimulation, Chemical , Thyrotropin-Releasing Hormone/pharmacology
6.
J Med Chem ; 44(6): 917-22, 2001 Mar 15.
Article in English | MEDLINE | ID: mdl-11300873

ABSTRACT

Extensive development of the structure-activity relationships of a screening lead determined three important pharmacophores for gonadotropin-releasing hormone (GnRH) receptor antagonist activity. Incorporation of the 3,4,5-trimethylphenyl group at the 3-position, 2-(2(S)-azetidinyl)ethoxy group at the 4-position, and N-4-pyrimidinylcarboxamide at the 6-position of the quinolone core resulted in the identification of 4-(2-(azetidin-2(S)-yl)ethoxy)-7-chloro-2-oxo-3-(3,4,5-trimethylphenyl)-1,2-dihydroquinoline-6-carboxylic acid pyrimidin-4-ylamide (1) as a potent antagonist of the GnRH receptor. A 10(4)-fold increase in in vitro binding affinity is observed for the GnRH receptor as compared to the initial screening lead. Compound 1 exhibits nanomolar binding activity and functional antagonism at the human receptor and is 7-fold less active at the rhesus receptor. Intravenous administration of compound 1 to rhesus monkeys results in a significant decrease of the serum levels of downstream hormones, luteinizing hormone (79% decrease in area under the curve) and testosterone (92% decrease in area under the curve), at a dose of 3 mg/kg. Quinolone 1 is a potent nonpeptidyl antagonist for the human GnRH receptor that is efficacious for the suppression of luteinizing hormone and testosterone in primates.


Subject(s)
Azetidines/chemical synthesis , Quinolones/chemical synthesis , Receptors, LHRH/antagonists & inhibitors , Animals , Azetidines/chemistry , Azetidines/pharmacokinetics , Azetidines/pharmacology , Binding, Competitive , CHO Cells , Cricetinae , Humans , In Vitro Techniques , Macaca mulatta , Pituitary Gland/metabolism , Quinolones/chemistry , Quinolones/pharmacokinetics , Quinolones/pharmacology , Radioligand Assay , Rats , Structure-Activity Relationship
7.
Bioorg Med Chem Lett ; 11(3): 415-7, 2001 Feb 12.
Article in English | MEDLINE | ID: mdl-11212124

ABSTRACT

N-Substituted nipecotic and iso-nipecotic amides of beta-methylTrpLys tert-butyl ester were found to be novel, selective and potent agonists of the somatostatin subtype-2 receptor in vitro. For example iso-nipecotic amide 8a showed high hsst2 binding affinity (Ki = 0.5 nM) and good selectivity (h5/h2 = 832).


Subject(s)
Nipecotic Acids/metabolism , Receptors, Somatostatin/agonists , Animals , Combinatorial Chemistry Techniques , Humans , Isomerism , Nipecotic Acids/chemical synthesis , Oligopeptides/chemical synthesis , Oligopeptides/metabolism , Protein Binding , Receptors, Somatostatin/metabolism , Structure-Activity Relationship
8.
J Physiol Paris ; 94(3-4): 211-5, 2000.
Article in English | MEDLINE | ID: mdl-11087999

ABSTRACT

High affinity, subtype selective non-peptide agonists of somatostatin receptor subtypes 1-5 were identified in combinatorial libraries constructed based on molecular modeling of known peptide agonists. Simultaneous traditional chemical synthesis yielded an additional series of somatostatin subtype-2 receptor (SSTR2) selective agonists. These compounds have been used to further define the physiological functions of the individual somatostatin receptor subtypes. In vitro experiments demonstrated the role of the SSTR2 in inhibition of glucagon release from mouse pancreatic alpha-cells and the somatostatin subtype-5 receptor (SSTR5) as a mediator of insulin secretion from pancreatic beta-cells. Both SSTR2 and SSTR5 regulated growth hormone release from the rat anterior pituitary gland. In vivo studies performed with SSTR2 receptor selective compounds demonstrated effective inhibition of pulsatile growth hormone release in rats. The SSTR2 selective compounds also lowered plasma glucose levels in normal and diabetic animal models. The availability of high affinity, subtype selective non-peptide agonists for each of the somatostatin receptors provides a direct approach to defining their physiological function both peripherally and in the central nervous system.


Subject(s)
Amides/chemistry , Indoles/chemistry , Naphthalenes/chemistry , Nitrobenzenes/chemistry , Pyridines/chemistry , Receptors, Somatostatin/agonists , Animals , Benzimidazoles/chemistry , CHO Cells , Cloning, Molecular , Combinatorial Chemistry Techniques , Cricetinae , Glucagon/metabolism , Insulin/metabolism , Islets of Langerhans/metabolism , Membrane Proteins , Receptors, Somatostatin/chemistry , Receptors, Somatostatin/genetics , Somatostatin/agonists
10.
Eur J Neurosci ; 12(10): 3761-70, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11029646

ABSTRACT

Somatostatin (SRIF) controls many physiological and pathological processes in the central nervous system but the respective roles of the five receptor isotypes (sst1-5) that mediate its effects are yet to be defined. In the present study, we attempted to identify functions of the sst2 receptor using mice with no functional copy of this gene (sst2 KO mice). In contrast with control 129Sv/C57Bl6 mice, sst2 mRNA was no longer detectable in the brain of sst2 KO mice; 125I-labeled Tyr0DTrp8-SRIF14 binding was also greatly reduced in almost all brain structures except for the hippocampal CA1 area, demonstrating that sst2 accounts for most SRIF binding in mouse brain. Invalidation of this subtype generated an increased anxiety-related behaviour in a number of behavioural paradigms, while locomotor and exploratory activity was decreased in stress-inducing situations. No major motor defects could be detected. sst2 KO mice also displayed increased release of pituitary ACTH, a main regulator of the stress response. Thus, somatostatin, via sst2 receptor isotype pathways, appears involved in the modulation of locomotor, exploratory and emotional reactivity in mice.


Subject(s)
Brain/metabolism , Emotions/physiology , Exploratory Behavior/physiology , Motor Activity/physiology , Receptors, Somatostatin/deficiency , Somatostatin/metabolism , Adrenocorticotropic Hormone/metabolism , Animals , Brain/cytology , Growth Hormone/metabolism , Mice , Mice, Knockout/abnormalities , Mice, Knockout/genetics , Mice, Knockout/metabolism , Neurons/cytology , Neurons/metabolism , Pituitary Gland/metabolism , Radioligand Assay , Reverse Transcriptase Polymerase Chain Reaction
11.
Bioorg Med Chem Lett ; 10(1): 5-8, 2000 Jan 03.
Article in English | MEDLINE | ID: mdl-10636230

ABSTRACT

Quinazolinone derivatives were synthesized and evaluated as non-peptidic growth hormone secretagogues. Modeling guided design of quinazolinone compound 21 led to a potency enhancement of greater than 200-fold compared to human growth hormone secretagogue affinity of a screening lead 4.


Subject(s)
Drug Design , Human Growth Hormone/metabolism , Quinazolines/chemical synthesis , Quinazolines/pharmacology , Receptors, Cell Surface/agonists , Receptors, G-Protein-Coupled , Animals , Binding Sites , Humans , Inhibitory Concentration 50 , Kinetics , Models, Molecular , Quinazolines/chemistry , Quinazolines/metabolism , Rats , Receptors, Cell Surface/metabolism , Receptors, Ghrelin , Secretory Rate/drug effects , Structure-Activity Relationship
12.
Biochem Biophys Res Commun ; 263(2): 276-80, 1999 Sep 24.
Article in English | MEDLINE | ID: mdl-10491284

ABSTRACT

Somatostatin (SST) regulates growth hormone (GH) secretion from pituitary somatotrophs by interacting with members of the SST family of G-protein-coupled receptors (sst1-5). We have used potent, nonpeptidyl SST agonists with sst2 and sst5 selectivity to determine whether these receptor subtypes are involved in regulating growth hormone releasing hormone (GHRH) stimulated secretion. GHRH stimulated GH release from pituitary cells in a dose-dependent manner, and this secretion was inhibited by Tyr(11)-SST-14, a nonselective SST analog. A sst2 selective agonist, L-779,976, potently inhibited GHRH-stimulated GH release. In addition, L-817, 818, a potent sst5 receptor selective agonist, also inhibited GH secretion, but was approximately 10-fold less potent (P < 0.01, ANOVA) in inhibiting GH release than either Tyr(11)-SST-14 or L-779, 976. These results show that both sst2 and sst5 receptor subtypes regulate GHRH-stimulated GH release from rat pituitary cells.


Subject(s)
Growth Hormone-Releasing Hormone/pharmacology , Growth Hormone/metabolism , Indoles , Pituitary Gland, Anterior/drug effects , Receptors, Somatostatin/agonists , Somatostatin/agonists , Amides/pharmacology , Animals , Dose-Response Relationship, Drug , Male , Pituitary Gland, Anterior/cytology , Rats , Rats, Wistar , Somatostatin/analogs & derivatives , Somatostatin/pharmacology
13.
Bioorg Med Chem Lett ; 9(3): 491-6, 1999 Feb 08.
Article in English | MEDLINE | ID: mdl-10091708

ABSTRACT

Backbone cyclization of urea-based somatostatin agonists resulted in novel, orally bioavailable agonists. Binding assays confirmed that the resulting conformationally constrained cyclic ureas retained the potency of their acyclic counterparts. SAR studies subsequently led to highly potent analogs, selective for receptor subtype 2, and having good oral bioavailability.


Subject(s)
Somatostatin/agonists , Somatostatin/pharmacology , Urea/chemistry , Administration, Oral , Animals , Benzimidazoles , Biological Availability , Dogs , Indoles , Somatostatin/chemistry , Somatostatin/pharmacokinetics , Structure-Activity Relationship
14.
J Comb Chem ; 1(5): 388-96, 1999.
Article in English | MEDLINE | ID: mdl-10748735

ABSTRACT

The tetradecapeptide somatostatin is widely distributed throughout the body and is thought to be involved with a variety of regulatory functions. Recently, five human somatostatin receptors (hSSTR1-5) have been cloned and characterized. Several selective peptidal agonists of the hSSTR receptors are known, and we sought to apply this information to the design of novel non-peptide small molecule ligands for each receptor. Initial computational methods identified a 200 nM murine SSTR2 active compound via a database search of our sample collection. A combinatorial library was designed around the structural class of the compound with the goal of rapidly developing this initial lead into the desired subtype-selective small molecules in order to characterize the pharmacology of each of the receptor subtypes. The library was synthesized using the resin-archive, iterative deconvolution format. The total number of unique compounds in the library was expected to be 131,670, present in 79 mixtures of 1330 or 2660 compounds per mixture. Through sequences of screening and mixture deconvolution, the components of selective and highly active (Ki = 50 pM to 200 nM) non-peptide small molecule ligands for somatostatin subtypes 1, 2, 4, and 5 were identified. In addition to discovering compounds with the desired activity and selectivity, useful structure/activity information was generated which can be used in the design of new compounds and second-generation combinatorial libraries.


Subject(s)
Combinatorial Chemistry Techniques/methods , Databases, Factual , Ligands , Receptors, Somatostatin/metabolism , Drug Design , Humans , Kinetics , Molecular Structure , Recombinant Proteins/metabolism , Somatostatin/chemistry , Structure-Activity Relationship
15.
Curr Opin Drug Discov Devel ; 2(4): 293-303, 1999 Jul.
Article in English | MEDLINE | ID: mdl-19649957

ABSTRACT

Non-peptide agonists of each of the five somatostatin receptors were identified from a combinatorial mixture library and three follow-up libraries. The initial library (20 x 20 x 79) was patterned after a lead structure which was identified by screening a set of molecules selected on the basis of molecular modeling of known peptide agonists of the somatostatin subtype-2 receptor (SSTR2). A second library with increased complexity (21 x 22 x 147) was designed around the same lead structure. Third and fourth libraries of aryl-indole compounds were designed, based on information that had been obtained by screening the first two libraries in five somatostatin receptor ligand-binding assays. Actives were chosen based on potency and receptor subtype selectivity profiles. The identity of each subtype selective compound present in active mixtures was determined by an iterative deconvolution process using resins archived from each step of the original synthesis. The approach of complex mixture screening was well validated with each of the five somatostatin receptors. The advantages of mixture screening with respect to manpower requirements, reagent consumption, and time to identify an active pure compound from a mixture were well illustrated in the course of this work. The availability of these high affinity, subtype selective agonists for each of the somatostatin receptors provided a direct approach to defining their physiological functions. In vitro experiments demonstrated the role of the somatostatin subtype-2 receptor (SSTR2) in inhibition of glucagon release from mouse pancreatic a-cells and the somatostatin subtype-5 receptor (SSTR5) as a mediator of insulin secretion from pancreatic b-cells. Both receptors regulated growth hormone release from the rat anterior pituitary gland.

16.
Science ; 282(5389): 737-40, 1998 Oct 23.
Article in English | MEDLINE | ID: mdl-9784130

ABSTRACT

Nonpeptide agonists of each of the five somatostatin receptors were identified in combinatorial libraries constructed on the basis of molecular modeling of known peptide agonists. In vitro experiments using these selective compounds demonstrated the role of the somatostatin subtype-2 receptor in inhibition of glucagon release from mouse pancreatic alpha cells and the somatostatin subtype-5 receptor as a mediator of insulin secretion from pancreatic beta cells. Both receptors regulated growth hormone release from the rat anterior pituitary gland. The availability of high-affinity, subtype-selective agonists for each of the somatostatin receptors provides a direct approach to defining their physiological functions.


Subject(s)
Amides/pharmacology , Receptors, Somatostatin/agonists , Amides/metabolism , Amino Acid Sequence , Animals , Cell Line , Cells, Cultured , Cricetinae , Drug Design , Glucagon/metabolism , Growth Hormone/metabolism , Insulin/metabolism , Insulin Secretion , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Ligands , Membrane Proteins , Mice , Models, Chemical , Molecular Sequence Data , Pituitary Gland, Anterior/drug effects , Pituitary Gland, Anterior/metabolism , Rats , Receptors, Somatostatin/physiology
17.
Proc Natl Acad Sci U S A ; 95(18): 10836-41, 1998 Sep 01.
Article in English | MEDLINE | ID: mdl-9724791

ABSTRACT

A series of nonpeptide somatostatin agonists which bind selectively and with high affinity to somatostatin receptor subtype 2 (sst2) have been synthesized. One of these compounds, L-054,522, binds to human sst2 with an apparent dissociation constant of 0.01 nM and at least 3,000-fold selectivity when evaluated against the other somatostatin receptors. L-054,522 is a full agonist based on its inhibition of forskolin-stimulated adenylate cyclase activity in Chinese hamster ovary-K1 cells stably expressing sst2. L-054,522 has a potent inhibitory effect on growth hormone release from rat primary pituitary cells and glucagon release from isolated mouse pancreatic islets. Intravenous infusion of L-054,522 to rats at 50 microgram/kg per hr causes a rapid and sustained reduction in growth hormone to basal levels. The high potency and selectivity of L-054, 522 for sst2 will make it a useful tool to further characterize the physiological functions of this receptor subtype.


Subject(s)
Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacology , Indoles/chemical synthesis , Indoles/pharmacology , Molecular Mimicry , Receptors, Somatostatin/agonists , Animals , CHO Cells , Cricetinae , Glucagon/antagonists & inhibitors , Glucagon/metabolism , Growth Hormone/metabolism , Humans , Insulin/metabolism , Insulin Antagonists/pharmacology , Male , Mice , Mice, Inbred C57BL , Rats
19.
Bioorg Med Chem ; 4(4): 531-6, 1996 Apr.
Article in English | MEDLINE | ID: mdl-8735840

ABSTRACT

A series of ophiobolins were isolated from a fungal extract based on their nematocidal activity. These compounds are non-competitive inhibitors of ivermectin binding to membranes prepared from the free-living nematode, Caenorhabditis elegans, with an inhibition constant of 15 microM. The ophiobolins which were most potent in the biological assays, ophiobolin C and ophiobolin M, were also the most potent compounds when evaluated in a C. elegans motility assay. These data suggest that the nematocidal activity of the ophiobolins is mediated via an interaction with the ivermectin binding site. The isolation, structure and biological activity of ophiobolins have been described.


Subject(s)
Anthelmintics/antagonists & inhibitors , Antinematodal Agents/pharmacology , Caenorhabditis elegans/drug effects , Ivermectin/antagonists & inhibitors , Terpenes/pharmacology , Animals , Anthelmintics/metabolism , Antinematodal Agents/chemistry , Antinematodal Agents/isolation & purification , Ascomycota/chemistry , Caenorhabditis elegans/metabolism , Helminthiasis/drug therapy , Ivermectin/metabolism , Magnetic Resonance Spectroscopy , Rats , Rats, Sprague-Dawley , Sesterterpenes , Terpenes/chemistry , Terpenes/isolation & purification
20.
Int J Parasitol ; 25(8): 923-7, 1995 Aug.
Article in English | MEDLINE | ID: mdl-8550292

ABSTRACT

Few studies have examined activity against trematodes for the avermectin/milbemycin class of anthelmintics. To gain insight into this, 12 different members of the avermectin/milbemycin mode of action class were tested against juvenile Fasciola hepatica in a mouse model. The compounds chosen were Avermectin A1, Avermectin A2, Avermectin B1, Avermectin B2, Ivermectin, Ivermectin monosaccharide, Ivermectin aglycone, 13-deoxy ivermectin aglycone, Moxidectin, 13-O-methoxyethoxymethyl ivermectin aglycone, 4"-deoxy-4"-epi-methylamino avermectin B1, and 4"-deoxy-4"-epi-acetylamino avermectin B1 5-oxime. Each of these compounds was administered orally to 4 mice at 2.0 mg kg-1. These mice had been administered 3 metacercariae of F. hepatica 14 days prior to treatment and all mice were necropsied 4 days after treatment. At necropsy, none of the individual avermectin or milbemycin-treated groups showed any significant activity (P > 0.05) against juvenile F. hepatica relative to a vehicle-treated control. In a receptor binding study, adult F. hepatica that had been obtained from sheep were homogenized, their membranes incubated in the presence of 3H-ivermectin, and then measured for high affinity binding sites. The same was done with the free-living nematode, Caenorhabditis elegans. While the C. elegans membranes displayed high affinity 3H-ivermectin binding sites over the range of ivermectin concentrations tested (5-100 nM), no significant 3H-ivermectin binding sites were detected in the F. hepatica membranes. Based on these data, it seems unlikely that any avermectin or milbemycin will show activity against F. hepatica, and certainly makes one pessimistic about possible activity of this mode of action class against trematodes in general.


Subject(s)
Antiplatyhelmintic Agents/metabolism , Antiplatyhelmintic Agents/therapeutic use , Fasciola hepatica , Fascioliasis/drug therapy , Ivermectin/metabolism , Ivermectin/therapeutic use , Animals , Anti-Bacterial Agents , Binding Sites , Caenorhabditis elegans/metabolism , Cell Membrane/metabolism , Fasciola hepatica/isolation & purification , Fasciola hepatica/physiology , Ivermectin/analogs & derivatives , Liver/parasitology , Macrolides/metabolism , Macrolides/therapeutic use , Mice , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...