Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 28(8): 12352-12362, 2020 Apr 13.
Article in English | MEDLINE | ID: mdl-32403733

ABSTRACT

Intensity-dependent effective four-photon absorption (4PA) coefficients in GaP and ZnTe semiconductors were measured by the z-scan method using pump pulses of 1.75 µm wavelength, 135 fs duration, and up to 500 GWcm-2 intensity. A nonlinear pulse propagation model, including linear dispersion and 4PA was used to obtain the 4PA coefficients from measurements. The intensity-dependent effective 4PA coefficients vary from 2.6 × 10-4 to 65 × 10-4 cm5GW-3 in GaP, and from 3.5 × 10-4 to 9.1 × 10-4 cm5GW-3 in ZnTe. The anisotropy in 4PA was shown in GaP. The knowledge of 4PA coefficients is important for the design of semiconductor photonics devices.

2.
Nanoscale ; 9(33): 11902-11911, 2017 Aug 24.
Article in English | MEDLINE | ID: mdl-28660936

ABSTRACT

Fluorescent carbon nanodots are a novel family of carbon-based nanoscale materials endowed with an outstanding combination of properties that make them very appealing for applications in nanosensing, photonics, solar energy harvesting and photocatalysis. One of the remarkable properties of carbon dots is their strong sensitivity to the local environment, especially to metal ions in solution. These interactions provide a testing ground for their marked photochemical properties, highlighted by many studies, and frequently driven by charge transfer events. Here we combine several optical techniques, down to femtosecond time resolution, to understand the interplay between carbon nanodots and aqueous metal ions such as Cu2+ and Zn2+. We find that copper inhibits the fluorescence of carbon dots through static and diffusional quenching mechanisms, and our measurements allow discriminating between the two. Ultrafast optical methods are then used to address the dynamics of copper-dot complexes, wherein static quenching takes place, and unveil the underlying complexity of their photocycle. We propose an initial increase of electronic charge on the surface of the dot, upon photo-excitation, followed by a partial electron transfer to the nearby ion, with 0.2 ps and 1.9 ps time constants, and finally a very fast (≪1 ps) non-radiative electron-hole recombination which brings the system back to the ground state. Notably, we find that the electron transfer stage is governed by an ultrafast water rearrangement around photo-excited dots, pointing out the key role of solvent interactions in the photo-physics of these systems.

3.
Opt Express ; 24(21): 23872-23882, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27828222

ABSTRACT

A new route to efficient generation of THz pulses with high-energy was demonstrated using semiconductor materials pumped at an infrared wavelength sufficiently long to suppress both two- and three-photon absorption and associated free-carrier absorption at THz frequencies. For pumping beyond the three-photon absorption edge, the THz generation efficiency for optical rectification of femtosecond laser pulses with tilted intensity front in ZnTe was shown to increase 3.5 times, as compared to pumping below the absorption edge. The four-photon absorption coefficient of ZnTe was estimated to be ß4=(4±1)×10-5 cm5/GW3. THz pulses with 14 µJ energy were generated with as high as 0.7% efficiency in ZnTe pumped at 1.7 µm. It is shown that scaling the THz pulse energy to the mJ level by increasing the pump spot size and pump pulse energy is feasible.

SELECTION OF CITATIONS
SEARCH DETAIL
...