Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 89(11): 113102, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30501323

ABSTRACT

A new experimental setup for in situ/operando investigations of redox reactions is introduced. This setup, in combination with ultra-high vacuum (UHV) methods from the field of surface science, provides completely new possibilities to investigate electrochemical redox reactions. Two types of cells are distinguished conceptionally: in the permeation configuration, the working electrode is electrochemically polarised on one side of a membrane (entry side), leading to atomic hydrogen uptake, and allowing proton and electron exchange between the entry and the other side (exit side) of the membrane. Here it is found that the applied potential on the entry side shows a 1:1 correlation with the measured potential on the exit side. The concept of the "window" cell requires ultra-thin, electron transparent "windows," such as single layer graphene, for X-ray photoelectron spectroscopy or X-ray transparent silicon nitride "windows" for X-ray absorption spectroscopy. In this case, the solid/liquid interface can be directly probed under applied potentials. In both configurations, the applied potential is measured with a palladium hydride reference electrode, with so far unseen precision and long-term stability. The cell design is constructed with regard to transferability within a UHV system, allowing sample preparation, and a modular construction, allowing a straightforward changeover between these two configurations. As a first application, an approach based on atomic hydrogen is presented. Further application concepts are discussed. The setup functionality is demonstrated by the example of in situ/operando investigation of the palladium oxide reduction.

2.
Langmuir ; 33(41): 10807-10817, 2017 10 17.
Article in English | MEDLINE | ID: mdl-28938076

ABSTRACT

The scanning Kelvin probe (SKP) is a versatile method for the measurement of the Volta potential difference between a sample and the SKP-tip (ΔψsampleSKP-tip). Based on suitable calibration, this technique is highly suited for the application in corrosion science due to its ability to serve as a very sensitive noncontact and nondestructive method for determining the electrode potential, even at buried interfaces beneath coatings or on surfaces covered by ultrathin electrolyte layers, which are not accessible by standard reference electrodes. However, the potential of the reference (i.e., the SKP-tip) will be influenced by variations of the surrounding atmosphere, resulting in errors of the electrode potential referred to the sample. The objective of this work is to provide a stable SKP-tip which can be used in different or changing atmosphere, e.g., within a wide range of relative humidity (approximately 0-99%-rh) or varying O2 partial pressure, without showing a change of its potential (note that the work functions measured in non-UHV atmospheres are electrochemical in nature [Hausbrand et al. J. Electrochem. Soc. 2008, 155 (7), C369-C379], and hence in the following we will refer to the potential of the SKP-tip instead of its work function). In that regard, the SKP-tip is in a first approach modified with self-assembled monolayers (SAMs) in order to create a hydrophobic barrier between the metallic surface and the surrounding atmosphere. The changes in potential upon varying relative humidity (ΔErh) of different bare metallic substrates are quantified, and it is shown that these potential differences cannot be minimized by SAMs. On the contrary, the ΔErh increases for every examined material system modified with SAMs. The major explanation for this observation is the dipole layer at the interface metal|SAM, causing an interfacial adsorption of water molecules even in a preferred orientation of their dipole moments, which leads to a changed work function and consequently to the correlated electrode potential. However, thin paraffin coatings were found to lead to a strongly reduced ΔErh, finally validated with novel robust Ag/Ag+ reference electrodes. It is also shown that nickel as SKP-tip material is seemingly more stable in varying atmospheric conditions compared to widely used Ni/Cr, stainless steel, or gold as SKP-tip material.

3.
Talanta ; 136: 108-13, 2015 May.
Article in English | MEDLINE | ID: mdl-25702992

ABSTRACT

In this work, a newly developed UHV-based high precision low background setup for hydrogen thermal desorption analysis (TDA) of metallic samples is presented. Using an infrared heating with a low thermal capacity enables a precise control of the temperature and rapid cool down of the measurement chamber. This novel TDA-set up is superior in sensitivity to almost every standard hydrogen analyzer available commercially due to the special design of the measurement chamber, resulting in a very low hydrogen background. No effects of background drift characteristic as for carrier gas based TDA instruments were observed, ensuring linearity and reproducibility of the analysis. This setup will prove to be valuable for detailed investigations of hydrogen trapping sites in steels and other alloys. With a determined limit of detection of 5.9×10(-3)µg g(-1) hydrogen the developed instrument is able to determine extremely low hydrogen amounts even at very low hydrogen desorption rates. This work clearly demonstrates the great potential of ultra-high vacuum thermal desorption mass spectroscopy instrumentation.

4.
Rev Sci Instrum ; 84(8): 085108, 2013 Aug.
Article in English | MEDLINE | ID: mdl-24007108

ABSTRACT

High temperature oxidation is an important research discipline that covers many topics in steel manufacture and modern energy research. To account for the need of adjusting accurate processing conditions, recent developments of the high temperature laboratory setup at the Max-Planck-Institut für Eisenforschung GmbH will be presented. The experimental assembly has been optimized to investigate surface and interface reactions at elevated temperatures in low oxygen activity gases, covering a large field of experimental possibilities. Many efforts have been taken to enable an accurate control and in situ monitoring of process conditions such as gas flow, gas composition, impurity content, and mass change of the sample.

5.
Langmuir ; 29(2): 815-24, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23231362

ABSTRACT

The effect of hard X-ray radiation on the structure and electrostatics of solid-supported lipid multilayer membranes is investigated using a scanning Kelvin probe (SKP) integrated with a high-energy synchrotron beamline to enable in situ measurements of the membranes' local Volta potential (V(p)) during X-ray structural characterization. The undulator radiation employed does not induce any detectable structural damage, but the V(p) of both bare and lipid-modified substrates is found to undergo strong radiation-induced shifts, almost immediately after X-ray exposure. Sample regions that are macroscopically distant (~cm) from the irradiated region experience an exponential V(p) growth with a characteristic time constant of several minutes. The V(p) variations occurring upon periodic on/off X-ray beam switching are fully or partially reversible depending on the location and time-scale of the SKP measurement. The general relevance of these findings for synchrotron-based characterization of biomolecular thin films is critically reviewed.


Subject(s)
Lipid Bilayers/chemistry , Lipid Bilayers/radiation effects , Phosphatidylcholines/chemistry , Phosphatidylserines/chemistry , Electrochemical Techniques , Synchrotrons , X-Ray Diffraction , X-Rays
6.
Nature ; 410(6827): 420-1, 423, 2001 Mar 22.
Article in English | MEDLINE | ID: mdl-11260693
7.
Anal Bioanal Chem ; 353(3-4): 316-9, 1995 Oct.
Article in English | MEDLINE | ID: mdl-15048489

ABSTRACT

The reduction of oxygen has been studied on octadecylmercaptan self-assembled monolayers adsorbed on gold substrates in borate buffer solutions with a rotating disc electrode. A great inhibition of the oxygen reduction and other electrochemical reactions by these monolayers has been found. However, after polarisation at -0.80 V(SHE) the protecting properties of the film against electron transfer reactions are lost, and a behaviour similar to bare gold is observed. Ex situ XPS indicates that the thiol monolayer has not been desorbed to a large extent during oxygen reduction. Disorders of the monolayer structure and desorption of thiol molecules are proposed as the main reasons for the accessibility of electrochemical reactions to the surface.

8.
Anal Bioanal Chem ; 353(3-4): 329-32, 1995 Oct.
Article in English | MEDLINE | ID: mdl-15048492

ABSTRACT

XPS and AES are suitable techniques for studying organic monolayers on metals if radiation doses are kept low. The adsorption of self-assembled (SA) mercaptan monolayers on gold is a process in two stages. The adsorption to near completeness is very rapid. However, the process of orientation of the carbon chains, which is responsible for the blocking of electrochemical reactions takes much longer, as could be shown by ARXPS (angle resolved X-ray photo electron spectroscopy). Adsorption under potential control allows electrochemical experiments during the adsorption process as e.g. the measurement of the capacity of the electric double layer. Furthermore the control of the potential guarantees sure that the metal/liquid interface is well defined during the adsorption process.

SELECTION OF CITATIONS
SEARCH DETAIL
...