Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(7): 12276-12290, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38571055

ABSTRACT

Pre-pedestal generation is observed in a 0.35-PW laser front end coming from a post-pedestal via instantaneous gain and pump depletion in an optical parametric amplifier during chirped-pulse amplification. Generalized simulations show how this effect arises from gain nonlinearity and applies to all optical parametric chirped-pulse-amplification systems with a post-pedestal. An experiment minimizing the effect of B-integral is used to isolate and study the newly observed conversion of a continuous post-pedestal into a continuous pre-pedestal. Matching numerical simulations confirm experimental results and additionally reveal how third-order dispersion largely controls the slope of the generated pre-pedestal.

2.
Opt Express ; 31(15): 24785-24795, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37475297

ABSTRACT

Optical parametric chirped-pulse amplification (OPCPA) using high-energy Nd:glass lasers has the potential to produce ultra-intense pulses (>1023 W/cm2). We report on the performance of the final high-efficiency amplifier in an OPCPA system based on large-aperture (63 × 63-mm2) partially deuterated potassium dihydrogen phosphate (DKDP) crystals. The seed beam (180-nm bandwidth, 110 mJ) was provided by the preceding OPCPA stages. A maximum pump-to-signal conversion efficiency of 41% and signal energy up to 13 J were achieved with a 52-mm-long DKDP crystal due to the flattop super-Gaussian pump beam profile and flat-in-time pulse shape.

3.
Opt Express ; 31(5): 8205-8216, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36859937

ABSTRACT

Optical parametric chirped-pulse-amplification produces two broadband pulses, a signal and an idler, that can both provide peak powers >100 GW. In most cases the signal is used, but compressing the longer-wavelength idler opens up opportunities for experiments where the driving laser wavelength is a key parameter. This paper will describe several subsystems that were added to a petawatt class, Multi-Terawatt optical parametric amplifier line (MTW-OPAL) at the Laboratory for Laser Energetics to address two long-standing issues introduced by the use of the idler, angular dispersion, and spectral phase reversal. To the best of our knowledge, this is the first time that compensation of angular dispersion and phase reversal has been achieved in a single system and results in a 100 GW, 120-fs duration, pulse at 1170 nm.

4.
Rev Sci Instrum ; 90(5): 053001, 2019 May.
Article in English | MEDLINE | ID: mdl-31153238

ABSTRACT

The Dynamic Compression Sector (DCS) laser is a 100-J ultraviolet Nd:glass system designed and built by the Laboratory for Laser Energetics for experimental research at the DCS located at the Advanced Photon Source (Argonne National Laboratory). Its purpose is to serve as a shock driver to study materials under extreme dynamic pressures. It was designed to deposit energy within a uniformly illuminated 500-µm spot on target, with additional optics provided to implement spot sizes of 250 and 1000 µm. Designed after larger-scale glass lasers such as OMEGA and the National Ignition Facility, the laser consists of a fiber front end with interferometer-based pulse shaping, a Nd:glass regenerative amplifier, a four-pass rod amplifier, and a 15-cm glass disk amplifier, through which six passes are made in a bowtie geometry. The output is frequency tripled from 1053 to 351 nm by using a pair of type-II phase-matched KDP crystals, with a third to increase conversion bandwidth. The super-Gaussian spot in the far field is achieved with a distributed phase plate and a 1-m aspherical focusing lens. Beam smoothing is achieved by smoothing by spectral dispersion and polarization smoothing, resulting in a root-mean-square variation in intensity on target of ±8.7%.

5.
Opt Lett ; 39(15): 4466-9, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-25078204

ABSTRACT

Self-phase modulation limits the amplification of short optical pulses because of spatial self-focusing and spectral broadening. Cascaded nonlinearities are theoretically and experimentally investigated for intracavity nonlinearity compensation in a neodymium-doped yttrium-lithium-fluoride (Nd:YLF) regenerative amplifier. Experimental results are in good agreement with simulations. Spectral broadening is significantly reduced, allowing for efficient amplification in a Nd:YLF power amplifier.

6.
Rev Sci Instrum ; 83(10): 10D726, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23126900

ABSTRACT

Electro-optic data-acquisition systems encode the output from voltage-history diagnostics onto optical signals. The optical signals can propagate long distances over fiber-optic links without degrading the bandwidth of the encoded signal while protecting the recording electronics from overvoltage damage. The sinusoidal response and tolerance to high-input voltages of the Mach-Zehnder modulator used for the encoding leads to the additional advantage of a high dynamic range and a reduced need for manually swapping attenuators. We have demonstrated a single-shot, electro-optic data-acquisition system with a 600:1 dynamic range. This system provides optical isolation and a bandwidth of 6 GHz. The prototype system uses multiple optical wavelengths to allow for the multiplexing of up to eight signals onto one photodetector.

SELECTION OF CITATIONS
SEARCH DETAIL
...