Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Plant J ; 112(2): 309-321, 2022 10.
Article in English | MEDLINE | ID: mdl-36050837

ABSTRACT

The spatial organization of protein synthesis in the eukaryotic cell is essential for maintaining the integrity of the proteome and the functioning of the cell. Translation on free polysomes or on ribosomes associated with the endoplasmic reticulum has been studied for a long time. More recent data have revealed selective translation of mRNAs in other compartments, in particular at the surface of mitochondria. Although these processes have been described in many organisms, particularky in plants, the mRNA targeting and localized translation mechanisms remain poorly understood. Here, the Arabidopsis thaliana Friendly (FMT) protein is shown to be a cytosolic RNA binding protein that associates with cytosolic ribosomes at the surface of mitochondria. FMT knockout delays seedling development and causes mitochondrial clustering. The mutation also disrupts the mitochondrial proteome, as well as the localization of nuclear transcripts encoding mitochondrial proteins at the surface of mitochondria. These data indicate that FMT participates in the localization of mRNAs and their translation at the surface of mitochondria.


Subject(s)
Arabidopsis , Proteome , Proteome/metabolism , Ribosomes/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Protein Biosynthesis
2.
Ann Bot ; 121(6): 1151-1161, 2018 05 11.
Article in English | MEDLINE | ID: mdl-29373642

ABSTRACT

Background and Aims: Trees constantly experience wind, perceive resulting mechanical cues, and modify their growth and development accordingly. Previous studies have demonstrated that multiple bending treatments trigger ovalization of the stem and the formation of flexure wood in gymnosperms, but ovalization and flexure wood have rarely been studied in angiosperms, and none of the experiments conducted so far has used multidirectional bending treatments at controlled intensities. Assuming that bending involves tensile and compressive strain, we hypothesized that different local strains may generate specific growth and wood differentiation responses. Methods: Basal parts of young poplar stems were subjected to multiple transient controlled unidirectional bending treatments during 8 weeks, which enabled a distinction to be made between the wood formed under tensile or compressive flexural strains. This set-up enabled a local analysis of poplar stem responses to multiple stem bending treatments at growth, anatomical, biochemical and molecular levels. Key Results: In response to multiple unidirectional bending treatments, poplar stems developed significant cross-sectional ovalization. At the tissue level, some aspects of wood differentiation were similarly modulated in the compressed and stretched zones (vessel frequency and diameter of fibres without a G-layer), whereas other anatomical traits (vessel diameter, G-layer formation, diameter of fibres with a G-layer and microfibril angle) and the expression of fasciclin-encoding genes were differentially modulated in the two zones. Conclusions: This work leads us to propose new terminologies to distinguish the 'flexure wood' produced in response to multiple bidirectional bending treatments from wood produced under transient tensile strain (tensile flexure wood; TFW) or under transient compressive strain (compressive flexure wood; CFW). By highlighting similarities and differences between tension wood and TFW and by demonstrating that plants could have the ability to discriminate positive strains from negative strains, this work provides new insight into the mechanisms of mechanosensitivity in plants.


Subject(s)
Flexural Strength , Wood , Compressive Strength , Plant Stems/anatomy & histology , Plant Stems/physiology , Populus/anatomy & histology , Populus/physiology , Tensile Strength , Wood/anatomy & histology , Wood/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...