Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Comp Psychol ; 121(3): 306-19, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17696657

ABSTRACT

Echolocating bottlenose dolphins (Tursiops truncatus) discriminate between objects on the basis of the echoes reflected by the objects. However, it is not clear which echo features are important for object discrimination. To gain insight into the salient features, the authors had a dolphin perform a match-to-sample task and then presented human listeners with echoes from the same objects used in the dolphin's task. In 2 experiments, human listeners performed as well or better than the dolphin at discriminating objects, and they reported the salient acoustic cues. The error patterns of the humans and the dolphin were compared to determine which acoustic features were likely to have been used by the dolphin. The results indicate that the dolphin did not appear to use overall echo amplitude, but that it attended to the pattern of changes in the echoes across different object orientations. Human listeners can quickly identify salient combinations of echo features that permit object discrimination, which can be used to generate hypotheses that can be tested using dolphins as subjects.


Subject(s)
Attention/physiology , Bottle-Nosed Dolphin/psychology , Discrimination Learning , Echolocation , Adult , Animals , Cues , Female , Humans , Learning , Male , Middle Aged , Species Specificity
2.
J Acoust Soc Am ; 119(3): 1867-79, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16583925

ABSTRACT

The focus of this study was to investigate how dolphins use acoustic features in returning echolocation signals to discriminate among objects. An echolocating dolphin performed a match-to-sample task with objects that varied in size, shape, material, and texture. After the task was completed, the features of the object echoes were measured (e.g., target strength, peak frequency). The dolphin's error patterns were examined in conjunction with the between-object variation in acoustic features to identify the acoustic features that the dolphin used to discriminate among the objects. The present study explored two hypotheses regarding the way dolphins use acoustic information in echoes: (1) use of a single feature, or (2) use of a linear combination of multiple features. The results suggested that dolphins do not use a single feature across all object sets or a linear combination of six echo features. Five features appeared to be important to the dolphin on four or more sets: the echo spectrum shape, the pattern of changes in target strength and number of highlights as a function of object orientation, and peak and center frequency. These data suggest that dolphins use multiple features and integrate information across echoes from a range of object orientations.


Subject(s)
Acoustics , Bottle-Nosed Dolphin/physiology , Echolocation/physiology , Animals , Choice Behavior/physiology , Discriminant Analysis , Discrimination, Psychological/physiology , Linear Models , Male , Multivariate Analysis , Sound Spectrography
3.
Nature ; 424(6949): 667-9, 2003 Aug 07.
Article in English | MEDLINE | ID: mdl-12904791

ABSTRACT

How organisms (including people) recognize distant objects is a fundamental question. The correspondence between object characteristics (distal stimuli), like visual shape, and sensory characteristics (proximal stimuli), like retinal projection, is ambiguous. The view that sensory systems are 'designed' to 'pick up' ecologically useful information is vague about how such mechanisms might work. In echolocating dolphins, which are studied as models for object recognition sonar systems, the correspondence between echo characteristics and object characteristics is less clear. Many cognitive scientists assume that object characteristics are extracted from proximal stimuli, but evidence for this remains ambiguous. For example, a dolphin may store 'sound templates' in its brain and identify whole objects by listening for a particular sound. Alternatively, a dolphin's brain may contain algorithms, derived through natural endowments or experience or both, which allow it to identify object characteristics based on sounds. The standard method used to address this question in many species is indirect and has led to equivocal results with dolphins. Here we outline an appropriate method and test it to show that dolphins extract object characteristics directly from echoes.


Subject(s)
Dolphins/physiology , Echolocation/physiology , Perception/physiology , Animals , Environment , Male , Models, Biological , Physical Stimulation
4.
J Acoust Soc Am ; 113(1): 605-16, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12558296

ABSTRACT

The Risso's dolphin (Grampus griseus) is an exclusively cephalopod-consuming delphinid with a distinctive vertical indentation along its forehead. To investigate whether or not the species echolocates, a female Risso's dolphin was trained to discriminate an aluminum cylinder from a nylon sphere (experiment 1) or an aluminum sphere (experiment 2) while wearing eyecups and free swimming in an open-water pen in Kaneohe Bay, Hawaii. The dolphin completed the task with little difficulty despite being blindfolded. Clicks emitted by the dolphin were acquired at average amplitudes of 192.6 dB re 1 microPa, with estimated sources levels up to 216 dB re 1 microPa-1 m. Clicks were acquired with peak frequencies as high as 104.7 kHz (Mf(p) = 47.9 kHz), center frequencies as high as 85.7 kHz (Mf(0) = 56.5 kHz), 3-dB bandwidths up to 94.1 kHz (M(BW) = 39.7 kHz), and root-mean-square bandwidths up to 32.8 kHz (M(RMS) = 23.3 kHz). Click durations were between 40 and 70 micros. The data establish that the Risso's dolphin echolocates, and that, aside from slightly lower amplitudes and frequencies, the clicks emitted by the dolphin were similar to those emitted by other echolocating odontocetes. The particular acoustic and behavioral findings in the study are discussed with respect to the possible direction of the sonar transmission beam of the species.


Subject(s)
Dolphins/physiology , Echolocation/physiology , Signal Processing, Computer-Assisted , Sound Spectrography , Animals , Female , Hawaii , Sensory Deprivation/physiology
5.
J Comp Psychol ; 116(2): 151-7, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12083609

ABSTRACT

The hearing sensitivity of an Atlantic bottlenose dolphin (Tursiops truncatus) to both pure tones and broadband signals simulating echoes from a 7.62-cm water-filled sphere was measured. Pure tones with frequencies between 40 and 140 kHz in increments of 20 kHz were measured along with broadband thresholds using a stimulus with a center frequency of 97.3 kHz and 88.2 kHz. The pure-tone thresholds were compared with the broadband thresholds by converting the pure-tone threshold intensity to energy flux density. The results indicated that dolphins can detect broadband signals slightly better than a pure-tone signal. The broadband results suggest that an echolocating bottlenose dolphin should be able to detect a 7.62-cm diameter water-filled sphere out to a range of 178 m in a quiet environment.


Subject(s)
Auditory Threshold , Dolphins/psychology , Echolocation , Pitch Discrimination , Animals , Appetitive Behavior , Female , Psychoacoustics , Sound Spectrography
SELECTION OF CITATIONS
SEARCH DETAIL
...