Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
2.
Sci Adv ; 7(38): eabg1333, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34533988

ABSTRACT

Late Quaternary precipitation dynamics in the central Andes have been linked to both high- and low-latitude atmospheric teleconnections. We use present-day relationships between fecal pellet diameters from ashy chinchilla rats (Abrocoma cinerea) and mean annual rainfall to reconstruct the timing and magnitude of pluvials (wet episodes) spanning the past 16,000 years in the Atacama Desert based on 81 14C-dated A. cinerea paleomiddens. A transient climate simulation shows that pluvials identified at 15.9 to 14.8, 13.0 to 8.6, and 8.1 to 7.6 ka B.P. can be linked to North Atlantic (high-latitude) forcing (e.g., Heinrich Stadial 1, Younger Dryas, and Bond cold events). Holocene pluvials at 5.0 to 4.6, 3.2 to 2.1, and 1.4 to 0.7 ka B.P. are not simulated, implying low-latitude internal variability forcing (i.e., ENSO regime shifts). These results help constrain future central Andean hydroclimatic variability and hold promise for reconstructing past climates from rodent middens in desert ecosystems worldwide.

3.
Sci Total Environ ; 774: 145126, 2021 Jun 20.
Article in English | MEDLINE | ID: mdl-33611001

ABSTRACT

South American tropical climate is strongly related to the tropical low-pressure belt associated with the South American monsoon system. Despite its central societal role as a modulating agent of rainfall in tropical South America, its long-term dynamical variability is still poorly understood. Here we combine a new (and world's highest) tree-ring 14C record from the Altiplano plateau in the central Andes with other 14C records from the Southern Hemisphere during the second half of the 20th century in order to elucidate the latitudinal gradients associated with the dissemination of the bomb 14C signal. Our tree-ring 14C record faithfully captured the bomb signal of the 1960's with an excellent match to atmospheric 14C measured in New Zealand but with significant differences with a recent record from Southeast Brazil located at almost equal latitude. These results imply that the spreading of the bomb signal throughout the Southern Hemisphere was a complex process that depended on atmospheric dynamics and surface topography generating reversals on the expected north-south gradient in certain years. We applied air-parcel modeling based on climate data to disentangle their different geographical provenances and their preformed (reservoir affected) radiocarbon content. We found that air parcel trajectories arriving at the Altiplano during the bomb period were sourced i) from the boundary layer in contact with the Pacific Ocean (41%), ii) from the upper troposphere (air above the boundary layer, with no contact with oceanic or continental carbon reservoirs) (38%) and iii) from the Amazon basin (21%). Based on these results we estimated the ∆14C endmember values for the different carbon reservoirs affecting our record which suggest that the Amazon basin biospheric 14C isoflux could have been reversed from negative to positive as early as the beginning of the 1970's. This would imply a much faster carbon turnover rate in the Amazon than previously modelled.


Subject(s)
Bombs , Trees , Brazil , Oceans and Seas , Pacific Ocean
4.
Science ; 366(6470): 1207-1208, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31806807

Subject(s)
Forests , Trees , Chile , Ecosystem
5.
PLoS One ; 12(6): e0179705, 2017.
Article in English | MEDLINE | ID: mdl-28628676

ABSTRACT

This article builds on the premise that human consumption of goods, food and transport are the ultimate drivers of climate change. However, the nature of the climate change problem (well described as a tragedy of the commons) makes it difficult for individuals to recognise their personal duty to implement behavioural changes to reduce greenhouse gas emissions. Consequently, this article aims to analyse the climate change issue from a human-scale perspective, in which each of us has a clearly defined personal quota of CO2 emissions that limits our activity and there is a finite time during which CO2 emissions must be eliminated to achieve the "well below 2°C" warming limit set by the Paris Agreement of 2015 (COP21). Thus, this work's primary contribution is to connect an equal per capita fairness approach to a global carbon budget, linking personal levels with planetary levels. Here, we show that a personal quota of 5.0 tons of CO2 yr-1 p-1 is a representative value for both past and future emissions; for this level of a constant per-capita emissions and without considering any mitigation, the global accumulated emissions compatible with the "well below 2°C" and 2°C targets will be exhausted by 2030 and 2050, respectively. These are references years that provide an order of magnitude of the time that is left to reverse the global warming trend. More realistic scenarios that consider a smooth transition toward a zero-emission world show that the global accumulated emissions compatible with the "well below 2°C" and 2°C targets will be exhausted by 2040 and 2080, respectively. Implications of this paper include a return to personal responsibility following equity principles among individuals, and a definition of boundaries to the personal emissions of CO2.


Subject(s)
Global Warming , Carbon Dioxide/analysis , Climate Change , Greenhouse Effect , Humans , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL