Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
PLoS One ; 18(11): e0293946, 2023.
Article in English | MEDLINE | ID: mdl-38011160

ABSTRACT

Studies based on the bacterial diversity present in Mansonia spp. are limited; therefore, the aim of this study was to investigate the bacterial diversity in females and larvae of Mansonia spp., describe the differences between the groups identified, and compare the microbiota of larvae from different collection sites. Sequences of the 16S rRNA region from the larvae and females of Mansonia spp. were analyzed. Diversity analyzes were performed to verify the possible bacterial differences between the groups and the collection sites. The results showed Pseudomonas was the most abundant genus in both females and larvae, followed by Wolbachia in females and Rikenellaceae and Desulfovibrio in larvae. Desulfovibrio and Sulfurospirillum, sulfate- and sulfur-reducing bacteria, respectively, were abundant on the larvae. Aminomonas, an amino acid-degrading bacterium, was found only in larvae, whereas Rickettsia was identified in females. Bacterial diversity was observed between females and larvae of Mansonia and between larvae from different collection sites. In addition, the results suggest that the environment influenced bacterial diversity.


Subject(s)
Culicidae , Female , Animals , Larva/microbiology , Brazil , RNA, Ribosomal, 16S/genetics , Culicidae/genetics , Bacteria/genetics
2.
PeerJ ; 8: e9057, 2020.
Article in English | MEDLINE | ID: mdl-32607275

ABSTRACT

A practical limitation to many metabarcoding initiatives is that sampling methods tend to collect many non-target taxa, which become "amplicon noise" that can saturate Next Generation Sequencing results and lead to both financial and resource inefficiencies. An available molecular tool that can significantly decrease these non-target amplicons and decrease the need for pre-DNA-extraction sorting of bycatch is the design of PCR primers tailored to the taxa under investigation. We assessed whether the D2 extension segment of the 28S ribosomal operon can limit this shortcoming within the context of mosquito (Culicidae) monitoring. We designed PCR primers that are fully conserved across mosquitos and exclude from amplification most other taxa likely to be collected with current sampling apparatuses. We show that, given enough sequencing depth, D2 is an effective marker for the detection of mosquito sequences within mock genomic DNA pools. As few as 3,050 quality-filtered Illumina reads were able to recover all 17 species in a bulk pool containing as little as 0.2% of constituent DNA from single taxa. We also mixed these mosquito DNA pools with high concentrations of non-Culicidae bycatch DNA and show that the component mosquito species are generally still recoverable and faithful to their original relative frequencies. Finally, we show that there is little loss of fidelity in abundance parameters when pools from degraded DNA samples were sequenced using the D2 primers.

SELECTION OF CITATIONS
SEARCH DETAIL
...