Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Transl Med ; 14(3): e1626, 2024 03.
Article in English | MEDLINE | ID: mdl-38500390

ABSTRACT

The interplay between the immune system and the metabolic state of a cell is intricate. In all phases of an immune response, the corresponding metabolic changes shall occur to support its modulation, in addition to the signalling through the cytokine environment and immune receptor stimulation. While autoimmune disorders may develop because of a metabolic imbalance that modulates switching between T-cell phenotypes, the effects that the interaction between T and B cells have on one another's cellular metabolism are yet to be understood in disease context. Here, we propose a perspective which highlights the potential of targeting metabolism to modulate T- and B-cell subtypes populations as well as T-B and B-T cell interactions to successfully treat autoimmune disorders. Specifically, we envision how metabolic changes can tip the balance of immune cells interactions, through definite mechanisms in both health and disease, to explain phenotype switches of B and T cells. Within this scenario, we highlight targeting metabolism that link inflammation, immunometabolism, epigenetics and ageing, is critical to understand inflammatory disorders. The combination of treatments targeting immune cells that cause (T/B) cell phenotype imbalances, and the metabolic pathways involved, may increase the effectiveness of treatment of autoimmune disorders, and/or ameliorate their symptoms to improve patients' quality of life.


Subject(s)
Autoimmune Diseases , Quality of Life , Humans , Autoimmune Diseases/metabolism , T-Lymphocytes/metabolism , Phenotype , Cell Communication
2.
Clin Transl Med ; 12(7): e898, 2022 07.
Article in English | MEDLINE | ID: mdl-35904141

ABSTRACT

Increasing efforts points to the understanding of how to maximize the capabilities of the adaptive immune system to fight against the development of immune and inflammatory disorders. Here we focus on the role of T cells as immune cells which subtype imbalance may lead to disease onset. Specifically, we propose that autoimmune disorders may develop as a consequence of a metabolic imbalance that modulates switching between T cell phenotypes. We highlight a Systems Biology strategy that integrates computational metabolic modelling with experimental data to investigate the metabolic requirements of T cell phenotypes, and to predict metabolic genes that may be targeted in autoimmune inflammatory diseases. Thus, we propose a new perspective of targeting T cell metabolism to modulate the immune response and prevent T cell phenotype imbalance, which may help to repurpose already existing drugs targeting metabolism for therapeutic treatment.


Subject(s)
Autoimmune Diseases , T-Lymphocytes , Autoimmune Diseases/drug therapy , Autoimmune Diseases/genetics , Humans , Immunity , Phenotype , Systems Biology , T-Lymphocytes/metabolism
3.
J Theor Biol ; 525: 110765, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34019850

ABSTRACT

Apoptosis has been extensively characterized by both experimental approaches and model simulations. However, it is still not fully understood how the regulation occurs, especially in the intrinsic pathway, which can be activated by a great variety of signals. In addition, the conditions in which a point of no return could be reached remain elusive. In this work, we use differential equations models to approach these issues. Our starting point was the model for caspase activation of Legewie et al. (Legewie S, et al., PLoS Computational Biology 2006, 2(9): e120), which exhibits irreversible bistability. We added an activation module to this model, with the main events related to mitochondrial outer membrane permeabilization, which includes cytochrome C release by the mitochondria and its effects on caspase activation and respiratory chain disruption. This "Extended Legewie Model" (ELM) uses BAK as the apoptotic stimulus and active caspase 3 as a measure of apoptosis activation. Unexpectedly, in the extended model, BAK cannot trigger apoptosis activation using physiologically sound initial values of the variables, due to limitations in apoptosome concentration increase. Therefore, the next step was to find a regulatory mechanism, allowing apoptosis activation in the ELM, starting from physiological initial concentrations. For this aim, we performed a sensitivity analysis on the 61 parameters of the system, finding that those producing the most relevant changes in the qualitative behaviour were the rates of synthesis of caspase 3, caspase 9 and XIAP. Based on these results, the transcription factor E2F was included in the ELM because it directly regulates the rate of synthesis of caspase 3 and 9. Depending on the concentration of E2F, the ELM shows different qualitative behaviours. On one hand, for low E2F apoptosis is impossible and for high E2F apoptosis is inevitable. Therefore, if E2F is sufficiently increased, the point of no return is crossed. On the other hand, for intermediate values of E2F there is a bistable region where the fate of the system also depends on the concentration of BAK and other signalling species.


Subject(s)
Apoptosis , Caspases , Caspases/metabolism , Cytochromes c/metabolism , Mitochondria , Mitochondrial Membranes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...