Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Extracell Vesicles ; 12(6): e12333, 2023 06.
Article in English | MEDLINE | ID: mdl-37328936

ABSTRACT

Cell proteostasis includes gene transcription, protein translation, folding of de novo proteins, post-translational modifications, secretion, degradation and recycling. By profiling the proteome of extracellular vesicles (EVs) from T cells, we have found the chaperonin complex CCT, involved in the correct folding of particular proteins. By limiting CCT cell-content by siRNA, cells undergo altered lipid composition and metabolic rewiring towards a lipid-dependent metabolism, with increased activity of peroxisomes and mitochondria. This is due to dysregulation of the dynamics of interorganelle contacts between lipid droplets, mitochondria, peroxisomes and the endolysosomal system. This process accelerates the biogenesis of multivesicular bodies leading to higher EV production through the dynamic regulation of microtubule-based kinesin motors. These findings connect proteostasis with lipid metabolism through an unexpected role of CCT.


Subject(s)
Extracellular Vesicles , Kinesins , Kinesins/metabolism , Chaperonin Containing TCP-1/metabolism , Extracellular Vesicles/metabolism , Lipid Metabolism , Lipids
2.
Methods Mol Biol ; 2346: 105-120, 2021.
Article in English | MEDLINE | ID: mdl-32897513

ABSTRACT

The immune synapse (IS) enables cell-cell communication between immune cells through close contacts, as well as T-cell activation and vesicle secretion. It is sustained by fine-tuned molecular interactions of receptors at both cell sides of the IS and intracellular cytoskeletal components. The resulting intracellular polarization of different organelles, through cytoskeleton-guided vesicular traffic, is a key player in IS formation and signaling. We describe herein a method to analyze rapid changes of vesicle localization through microscopy analysis upon polarization toward the IS. These vesicles are monitored using the centrosome and its associated microtubular network or the actin-based structures as spatial references during the organization of the IS.


Subject(s)
Cell Communication/immunology , Extracellular Vesicles/immunology , Immunological Synapses/immunology , Cell Line , Humans
3.
Int J Mol Sci ; 21(8)2020 Apr 19.
Article in English | MEDLINE | ID: mdl-32325900

ABSTRACT

The immune synapse (IS) is a well-known intercellular communication platform, organized at the interphase between the antigen presenting cell (APC) and the T cell. After T cell receptor (TCR) stimulation, signaling from plasma membrane proteins and lipids is amplified by molecules and downstream pathways for full synapse formation and maintenance. This secondary signaling event relies on intracellular reorganization at the IS, involving the cytoskeleton and components of the secretory/recycling machinery, such as the Golgi apparatus and the endolysosomal system (ELS). T cell activation triggers a metabolic reprogramming that involves the synthesis of lipids, which act as signaling mediators, and an increase of mitochondrial activity. Then, this mitochondrial activity results in elevated reactive oxygen species (ROS) production that may lead to cytotoxicity. The regulation of ROS levels requires the concerted action of mitochondria and peroxisomes. In this review, we analyze this reprogramming and the signaling implications of endolysosomal, mitochondrial, peroxisomal, and lipidic systems in T cell activation.


Subject(s)
Endosomes/metabolism , Lipid Metabolism , Lymphocyte Activation/immunology , Lysosomes/metabolism , Peroxisomes/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Cellular Reprogramming/immunology , Energy Metabolism , Humans , Immunological Synapses/immunology , Immunological Synapses/metabolism , Immunomodulation , Mitochondria/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...