Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Publication year range
1.
Life (Basel) ; 13(8)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37629486

ABSTRACT

Canine monocytic ehrlichiosis (CME) is the most common tick-borne disease affecting domestic dogs and other wild canids. It has a worldwide distribution and is associated with the presence of the brown dog tick. Few studies have been conducted in Mexico to identify and characterize Ehrlichia canis genetic variability. In the present study, 111 dogs of different sex, breed, and age from three geographic regions in Mexico were included. All of them had a previous history of tick infestation and/or the presence of one or more clinical signs compatible with CME. All dogs were tested by a commercial ELISA and nested PCR assay for the detection of E. canis. In addition, we analyzed the E. canis genetic diversity from the 16S rRNA gene sequences obtained in this study, along with 15 additional sequences described for E. canis in Mexico and obtained from GeneBank. Serological detection by commercial ELISA results showed overall infection rates of 85.58% (95/111), including 73.1% (30/41) in samples from Guerrero state; 75% (15/20) in Morelos; and 100% (50/50) in Chihuahua. On the other hand, molecular detection (nPCR assay) showed 31.5% (35/111) overall infection rate, with 41.4% (17/41) in Guerrero state; 55% (11/20) in Morelos; and 14% (7/50) in Chihuahua. We observed a high 16S rRNA gene sequence conservancy in most of the E. canis isolates in the three geographical areas from Mexico, including those analyzed in this research, suggesting a common geographic origin among isolates.

2.
Microorganisms ; 10(9)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36144303

ABSTRACT

Two hundred and thirty-three blood samples of water buffalo were collected on four farms in Veracruz state and Tabasco state, Mexico, to detect and confirm the identities of Babesia and Anaplasma spp. sequences. Nested PCR assays were used for the amplification of specific genes encoding B. bovis rhoptry-associated protein (RAP-1), B. bigemina SpeI-AvaI restriction fragment, and Anaplasma marginale major surface protein 5 (MSP5). Using DNA sequencing and BLASTn analysis for DNA homology hemoparasite identification, the identities of the hemoparasites were established by comparing the nucleotide sequences obtained in this study with those available in the GenBank database at the National Center for Biotechnology Information (NCBI). Water buffalo infection with at least one of the hemoparasites under study was detected in 45% (105/233) of the blood samples, while a mixed infection with B. bovis and B. bigemina was detected in 6.4% (15/233) of samples. For this cross-sectional study, mixed infections with the three hemoparasites were not detected. BLASTn analysis revealed that the nucleotide sequences of the water buffalo isolates shared sequence identity values ranging from 88 to 100% with previously published gene sequences of B. bovis, B. bigemina, and A. marginale. The current results confirm that water buffalo, as cattle, are also carriers of hemoparasite infections that are tick-transmitted, and suggest that they probably have an important role in the epidemiology of bovine babesiosis in Mexico.

3.
Pathogens ; 10(6)2021 Jun 19.
Article in English | MEDLINE | ID: mdl-34205286

ABSTRACT

Babesia bovis, an etiological agent of bovine babesiosis, causes a significant burden to the cattle industry worldwide. The most efficient method to mitigate bovine babesiosis is a live vaccine produced by serial passage in splenectomized cattle. However, there are several concerns regarding live vaccine production, including variation between batches and the use of many animals. In this study, we report a B. bovis-SF strain continuously cultured in a medium free of components of animal origin enriched with a chemically defined lipid mixture (CD lipid mixture) and the use of a perfusion bioreactor to harvest a large amount of B. bovis. Six culture media were compared, including VP-SFM, CD-CHO, CD-Hydrolyzed, CD-CHO, SFM, and ADMEM/F12. We found that the VP-SFM medium performed the best for B. bovis growth, with a maximum percentage of parasitized erythrocytes (PPE) of 8.6%. The effect of six dilutions of a commercial mixture of CD lipids added to VP-SFM showed that the CD lipid mixture at a dilution of 1:100 had the best B. bovis growth curve, with a maximum PPE of 13.9%. Propagation of the in vitro B. bovis culture was scaled up in a perfusion bioreactor using VP-SFM with a CD lipid mixture, and the PPE reached over 32%. The continuous in vitro B. bovis culture in a medium free of animal origin components could potentially reduce and replace the use of animals to produce a reagent for diagnostics and live vaccines to control bovine babesiosis.

4.
Pathogens ; 9(5)2020 May 01.
Article in English | MEDLINE | ID: mdl-32370024

ABSTRACT

In this study, we report Babesia bigemina proliferation in culture medium free of components of animal origin supplemented with a lipid mixture. Babesia bigemina continuously proliferated in VP-SFM with a higher percent parasitized erythrocyte as compare to using other animal component-free culture media. Compared with Advanced DMEM/F12 (ADMEM/F12), VP-SFM had a similar percent parasitized erythrocyte (PPE). Supplementation of VP-SF with a lipid acid mixture improved B. bigemina proliferation in vitro culture, with a maximum PPE of 11.3%. Growth of B. bigemina in a perfusion bioreactor using VP-SFM medium supplemented with lipid mixture resulted in a PPE above 28%. In conclusion, we demonstrated that B. bigemina proliferated in an animal component-free medium supplemented with the fatty acid mixture. This innovation to B. bigemina in vitro culture method presented herein is an important source of biological material for live vaccine production and understanding the mechanisms and molecules involved in parasite attachment and invasion of bovine erythrocytes.

6.
Parasitol Int ; 67(2): 190-195, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29155165

ABSTRACT

An attenuated live vaccine containing Babesia bovis and B. bigemina cultured in vitro with a serum-free medium was assessed for its clinical protection conferred of naïve cattle, under natural tick-challenge in a high endemicity zone to Babesia spp. Three groups of six animals were treated as follows: group I (GI) received a vaccine derived from parasites cultured with a free-serum medium; group II (GII) were immunized with the standard vaccine, with parasites cultured in a medium supplemented with 40% (v/v) bovine serum; and a control group (GIII) inoculated with non-infected bovine erythrocytes. Inocula were administered by IM route. Experimental animals were kept during 23days after vaccination in a cattle farm free of ticks and Babesia spp. Thereafter, cattle were moved to a high endemicity farm for natural exposure to Babesia spp. transmitted by Rhipicephalus microplus ticks. Protection against clinical babesiosis was observed in bovines belonging to GI (100%) and GII (83.33%), while the control animals (GIII) were not protected, and showed severe clinical signs, closely related to babesiosis, were observed for at least three consecutive days during the challenge. These were fever, anemia, which were measured simultaneously, and circulating parasites were detected by optic light microscopy. All cattle showed B. bovis and B. bigemina in stained blood films during the challenge; B. bovis antibody titers were higher than those to B. bigemina in GI and GII, and lower titers were determined in GIII. The protective capacity of the vaccine derived from B. bovis and B. bigemina cultured in vitro in a serum-free medium was demonstrated.


Subject(s)
Babesia bovis/immunology , Babesia/immunology , Babesiosis/prevention & control , Vaccines, Attenuated/administration & dosage , Anemia/parasitology , Animals , Antibodies, Protozoan/blood , Babesia/growth & development , Babesia/ultrastructure , Babesia bovis/growth & development , Babesia bovis/ultrastructure , Babesiosis/blood , Babesiosis/immunology , Babesiosis/transmission , Cattle , Culture Media, Serum-Free , Fever/parasitology , Microscopy , Rhipicephalus/parasitology , Transition Temperature , Vaccination/methods , Vaccines, Attenuated/immunology
7.
Vet. Méx ; 43(3): 189-200, jul.-sept. 2012. ilus
Article in Spanish | LILACS-Express | LILACS | ID: lil-676839

ABSTRACT

The effect of Lactobacillus casei on INIFAP's mixed vaccine against bovine babesiosis (VAC) was assessed in bovines in an endemic babesiosis area. It was previously reported that L. casei increases the efficiency of the Mexican mixed vaccine against bovine babesiosis under controlled conditions. The results of the present study demonstrated the effectiveness of simultaneous vaccination of bovines with L. casei and the mixed vaccine against bovine babesiosis in eliciting a protective immune response under extreme conditions in the field. Twenty Babesia spp free bovines were allocated into three groups: un-vaccinated (Control, n = 9), vaccinated with VAC (n = 5), and vaccinated simultaneously with VAC and Lactobacillus casei (LC-VAC, n = 6). All animals were kept in a tick and Babesia spp free field at Coatepec, Veracruz during 24 days before moving them to Paso del Toro, Veracruz, for a natural exposition to Babesia spp transmitted by Riphicephalus (Boophilus) microplus ticks. Protection against Babesia spp was observed in bovines belonging to VAC and LC-VAC groups, while control animals showed severe clinical babesiosis. Bovines in VAC-LC group showed less clinical signs between days 12-16 after challenge as compared with animals in VAC group. All bovines showed both Babesia spp after challenge. Levels of IgG anti-Babesia in animals from both vaccinated groups, determined by indirect immunofluorescence test, always were higher to Babesia bovis than to B. bigemina after vaccination and challenge. It was demonstrated the efficiency of simultaneous vaccination of bovines with VAC and L. casei, in eliciting a better protective immune response against naturally transmitted Babesia spp under extreme field conditions.


Se evaluó el efecto de Lactobacillus casei en la vacuna mixta contra babesiosis bovina del INIFAP (VAC), en bovinos de un área endémica de babesiosis. Previamente se informó que L. casei incrementa la eficacia de la vacuna mixta mexicana contra babesiosis bovina bajo condiciones controladas. Los resultados aquí expuestos demostraron dicha efectividad para generar una respuesta inmunitaria protectora bajo condiciones extremas en el campo. Veinte bovinos libres de Babesia spp fueron distribuidos al azar en tres grupos: testigo no vacunado (Testigo, n = 9), vacunado con VAC (n = 5), y vacunado simultáneamente con VAC y L. casei (LC-VAC, n = 6). Todos los animales se mantuvieron en un corral libre de garrapatas y Babesia spp en Coatepec, Veracruz durante 24 días antes de transportarlos a Paso del Toro, Veracruz, para una exposición natural a Babesia spp transmitida por garrapatas Riphicephalus (Boophilus). Se observó protección contra Babesia spp en bovinos pertenecientes a los grupos VAC y LC-VAC, mientras que los animales testigo mostraron signos clínicos de babesiosis aguda. Los bovinos del grupo VAC-LC mostraron menos signos clínicos que los del grupo VAC entre los días 12-16. Todos los bovinos mostraron Babesia spp después de la confrontación. Los niveles de IgG anti-Babesia en los animales de los grupos vacunados, determinados por inmunofluorescencia indirecta, siempre fueron más elevados contra Babesia bovis que contra B. bigemina después de la vacunación y de la confrontación. Se demostró la eficacia de la vacunación simultánea con VAC y L. casei en bovinos, para generar una mejor respuesta inmunitaria protectora contra Babesia spp transmitida naturalmente por garrapatas, bajo condiciones extremas de campo.

SELECTION OF CITATIONS
SEARCH DETAIL
...