Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 6(1): 990, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37798331

ABSTRACT

The invasive hornet Vespa velutina nigrithorax is considered a proliferating threat to pollinators in Europe and Asia. While the impact of this species on managed honey bees is well-documented, effects upon other pollinator populations remain poorly understood. Nonetheless, dietary analyses indicate that the hornets consume a diversity of prey, fuelling concerns for at-risk taxa. Here, we quantify the impact of V. velutina upon standardised commercially-reared colonies of the European bumblebee, Bombus terrestris terrestris. Using a landscape-scale experimental design, we deploy colonies across a gradient of local V. velutina densities, utilising automated tracking to non-invasively observe bee and hornet behaviour, and quantify subsequent effects upon colony outcomes. Our results demonstrate that hornets frequently hunt at B. terrestris colonies, being preferentially attracted to those with high foraging traffic, and engaging in repeated-yet entirely unsuccessful-predation attempts at nest entrances. Notably however, we show that B. terrestris colony weights are negatively associated with local V. velutina densities, indicating potential indirect effects upon colony growth. Taken together, these findings provide the first empirical insight into impacts on bumblebees at the colony level, and inform future mitigation efforts for wild and managed pollinators.


Subject(s)
Wasps , Bees , Animals , Europe , Asia , Predatory Behavior
2.
Animals (Basel) ; 14(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38200860

ABSTRACT

The invasive hornet Vespa velutina affects apiculture, biodiversity, and human health. The use of baited traps with the aim of reducing the population and mitigating its impacts is a common practice. However, the lack of impact on the number of colonies and the high capture rate of non-target insects make it controversial. Our objective was to compare the effectiveness and selectiveness of four trap models. We measured effectiveness as the capture rate of V. velutina per day per trap, and selectiveness as the capture rate of V. velutina/capture rate of non-target species. The E trap had better performance with a higher selectiveness and effectiveness. Traps V and X had a higher effectiveness but the lowest selectiveness, with high capture rates of native insects, including threatened species. The R trap had the lowest effectiveness and selectiveness. Results show that small changes in the design can contribute to achieving more sustainable tools. Otherwise, with the current tools, bait trapping continues to be non-sustainable from an environmental perspective due to the impacts on native biodiversity.

3.
Pest Manag Sci ; 78(12): 5142-5149, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36054508

ABSTRACT

BACKGROUND: Vespa velutina has become a species of concern in invaded regions of Europe and Asia, due to its impacts on biodiversity, apiculture and society. This hornet, a ferocious hunter of pollinating insects, poses a serious threat to biodiversity and pollination services. Despite ongoing efforts, its extermination in continental Europe is hampered by a lack of effective control methods, thus effective mitigation measures are primary concerns. The aims of this work were: (i) to study the effects of V. velutina predating on honey bee colonies, and (ii) to assess the effectiveness of electric harps in reducing hunting pressure and predation. We assessed the predation pressure and compared honey bee colony performance, body weight of workers, and winter survivorship for protected versus unprotected colonies in 36 experimental hives across three apiaries. RESULTS: Electric harps protected honey bees by reducing predation pressure and therefore mitigating foraging paralysis. Consequently, foraging activity, pollen income, brood production and worker body weight were higher in protected colonies which in turn showed greater winter survivorship than those that were unprotected, especially at sites with intermediate to high levels of predation. CONCLUSION: The predation of V. velutina affects foraging activity, breeding, body weight and colony survivorship of Apis mellifera. Electric harps contribute significantly to mitigate the impact of this invasive hornet on apiaries; however, they should be deployed in tandem with additional measures to preserve honey bee colony stocks, such as facilitating access to food sources for colonies during the periods of highest predation pressure. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Bees , Predatory Behavior , Wasps , Animals , Body Weight , Plant Breeding , Pollination
4.
Front Insect Sci ; 2: 851010, 2022.
Article in English | MEDLINE | ID: mdl-38468760

ABSTRACT

The Asian hornet Vespa velutina is a social predator that has invaded several countries of Europe and Asia, impacting pollinators, apiculture and human health. One of the few effective control methods developed so far is the early destruction of nests. However, they are often built within dense vegetation, being difficult to detect. The aim of the method described here is to detect nests with a simple procedure, utilizing readily available materials, for widespread use in infested areas. The method has two phases, the first phase involves capturing and marking hornets, lured to a protein bait, and recording the flight directions of individuals to the nest and the time needed to complete a bait-nest-bait round trip, to estimate the distance. Collecting this information from two (or more) bait stations allows to delineate the approximate location of the nest. The second phase aims to determine the precise location of the nest, using sugary baits in the vicinity of the nest and conspicuous marks attached to the released hornets, to visually follow them up to their nest. This method is an alternative to other methods that are either ineffective in areas with high nest density or require expensive equipment and specialized training.

5.
Sci Rep ; 11(1): 11233, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34045562

ABSTRACT

Invasive species contribute to deteriorate the health of ecosystems due to their direct effects on native fauna and the local parasite-host dynamics. We studied the potential impact of the invasive hornet Vespa velutina on the European parasite-host system by comparing the patterns of diversity and abundance of pathogens (i.e. Microsporidia: Nosematidae; Euglenozoa: Trypanosomatidae and Apicomplexa: Lipotrophidae) in European V. velutina specimens with those in the native European hornet Vespa crabro, as well as other common Hymenoptera (genera Vespula, Polistes and Bombus). We show that (i) V. velutina harbours most common hymenopteran enteropathogens as well as several new parasitic taxa. (ii) Parasite diversity in V. velutina is most similar to that of V. crabro. (iii) No unambiguous evidence of pathogen release by V. velutina was detected. This evidence together with the extraordinary population densities that V. velutina reaches in Europe (around of 100,000 individuals per km2 per year), mean that this invasive species could severely alter the native pathogen-host dynamics either by actively contributing to the dispersal of the parasites and/or by directly interacting with them, which could have unexpected long-term harmful consequences on the native entomofauna.


Subject(s)
Ecosystem , Hymenoptera/parasitology , Wasps/parasitology , Animals , Apicomplexa , Euglenozoa , Europe , Host-Parasite Interactions , Introduced Species , Microsporidia , Trypanosomatina
6.
Plants (Basel) ; 10(4)2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33924177

ABSTRACT

Floral development depends on multifactor processes related to genetic, physiological, and ecological pathways. Plants respond to herbivores by activating mechanisms aimed at tolerating, compensating, or avoiding loss of biomass and nutrients, and thereby survive in a complex landscape of interactions. Thus, plants need to overcome trade-offs between development, growth, and reproduction vs. the initiation of anti-herbivore defences. This study aims to assess the frequency of phloem-feeding herbivores in wild populations of the Etruscan honeysuckle (Lonicera etrusca Santi) and study their effects on floral development and reproduction. The incidence of herbivory by the honeysuckle aphid (Hyadaphis passerinii del Guercio) was assessed in three wild populations of the Iberian Peninsula. The effect of herbivory on floral morphology, micromorphology of stigmas and pollen, floral rewards, pollination, and fruit and seed set were studied. The herbivory by aphids reduces the size of flowers and pollen. Additionally, it stops nectar synthesis and causes malformation in pollen and microstructures of stigmas, affecting pollination. As a consequence, fruit set and seed weight are reduced. This work provides evidence of the changes induced by phloem-feeding herbivores in floral development and functioning that affect the ecological processes necessary to maintain the reproductive success of plants.

7.
Ann Bot ; 117(2): 291-7, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26482653

ABSTRACT

BACKGROUND AND AIMS: Nectar robbers affect host fitness in different ways and by different magnitudes, both directly and indirectly, and potentially constitute an important part of pollination interactions. The aim of this study was to assess the effect of nectar robbing on several variables that characterize the reproductive success of Lonicera etrusca, a pollinator-dependent plant with long, tubular flowers that produce abundant nectar. METHODS: Using fluorescent powder dye as a proxy for pollen, the distance of pollen dispersal was compared for robbed and non-robbed flowers. Artificial nectar robbing treatments were applied to test its effects on four additional measures of reproductive success, namely the quantity of pollen exported, fruit set, seed/ovule ratio and seed weight. KEY RESULTS: Nectar robbing was not found to have any significant negative consequences on female and male components of reproductive success as determined through the five variables that were measured. CONCLUSIONS: Although L. etrusca exhibits high levels of nectar robbing and nectar robbers are common floral visitors, no evidence was found of detrimental changes in the components of reproductive success. A combination of morphological and ecological mechanisms is proposed to explain how plants may compensate for the energetic loss caused by the nectar robbers.


Subject(s)
Lonicera/physiology , Plant Nectar , Pollen/physiology , Pollination , Fruit , Ovule/physiology , Reproduction , Seeds/physiology , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...