Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mini Rev Med Chem ; 12(11): 1040-8, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23092405

ABSTRACT

In the search of the sleep substance, many studies have been addressed for different hormones, responsible for sleep-wake cycle regulation. In this article we mentioned the participation of steroid hormones, besides its role regulating sexual behavior, they influence importantly in the sleep process. One of the clearest relationships are that estrogen and progesterone have, that causing changes in sleep patterns associated with the hormonal cycles of women throughout life, from puberty to menopause and specific periods such as pregnancy and the menstrual cycle, including being responsible for some sleep disorders such as hypersomnia and insomnia. Another studied hormone is cortisol, a hormone released in stressful situations, when an individual must react to an extraordinary demand that threatens their survival, but also known as the hormone of awakening because the release peak occurs in the morning, although this may be altered in some sleep disorders like insomnia and mood disorders. Furthermore neurosteroids such as pregnanolone, allopregnanolone and pregnenolone are involved in the generation of slow wave sleep, the effect has been demonstrated in experimental animal studies. Thus we see that the sleep and the endocrine system saved a bidirectional relationship in which depends on each other to regulate different physiological processes including sleep.


Subject(s)
Gonadal Steroid Hormones/metabolism , Sleep , Animals , Endocrine System/metabolism , Female , Humans , Male , Menopause , Menstrual Cycle , Pregnancy , Puberty
2.
Pharmacol Biochem Behav ; 91(3): 291-4, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18700151

ABSTRACT

Chlorpheniramine is a selective antagonist of the H1 histaminergic receptor subtype and its effects in humans include somnolence. Chlorpheniramine affects sleep in rats, mainly by decreasing REM sleep. On the other hand, stress by immobilization induces an important increase in the percentage of REM sleep. In this study we analyzed the effects of blocking histaminergic receptors on REM sleep induced by immobilization stress. Adult male Wistar rats were chronically implanted for sleep recording. Immobilization stress was induced by placing the rat in a small cylinder for 2 h. Experimental conditions were: A. Control; B. Stress; C. Stress plus vehicle and D. Stress plus chlorpheniramine. Independent experiments were done both in the dark, as well as the light period. Results showed that the increase in REM sleep observed after immobilization stress was completely abolished by chlorpheniramine, both in the dark and in the light phase. Furthermore, the decrease in REM sleep was significant even when compared to the non-stressed control rats. REM sleep latency was also significantly longer during both light phases. The present results suggest that REM sleep is quite sensitive to histaminergic blockage. It is possible that chlorpheniramine is also blocking the cholinergic mechanisms generating REM sleep.


Subject(s)
Chlorpheniramine/pharmacology , Histamine H1 Antagonists/pharmacology , Sleep, REM/drug effects , Stress, Psychological/psychology , Animals , Darkness , Electroencephalography/drug effects , Electromyography/drug effects , Light , Male , Polysomnography/drug effects , Rats , Rats, Wistar , Restraint, Physical
SELECTION OF CITATIONS
SEARCH DETAIL
...