Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Materials (Basel) ; 16(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38068179

ABSTRACT

This study presents the quantity and quality of flax (Linum usitatissimum L.) and hemp (Cannabis sativa L.) fibers obtained depending on the fiber extraction method. The extraction methods used in this study were osmotic degumming, dew retting, and water retting. The degummed straw was analyzed for fiber content, while the metrological, chemical, and physical properties were determined for the fibers obtained. It was shown that these properties change based on the method of fiber extraction used. The highest fiber content in the straw was obtained using the osmotic degumming method. These fibers are characterized by a light color, no unpleasant odor, low linear mass, good tenacity, lowest hygroscopicity, and reduced flammability compared to fibers obtained via the dew and water retting of straw.

2.
Materials (Basel) ; 16(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37629959

ABSTRACT

The aim of this study was to develop a natural nonwoven layer made of cottonized bleached flax and cotton fibers which is suitable to replace one of the three polypropylene layers of face mask type II in order to reduce non-biodegradable waste production and limit the negative impact of used masks on the environment. The work focused on the design of a nonwoven structure based on properly blending cotton and flax fibers as well as ensuring the cover factor, which can support the mask's barrier properties against air dust particles and does not make breathing difficult. Additionally, a biodegradable film was developed to connect the nonwoven layer with the other polypropylene filtering layers. The effectiveness of the biodeterioration of the flax/cotton nonwoven was evaluated based on a test of the susceptibility of materials to the action of soil microorganisms. The flax/cotton nonwoven layer was tested in terms of mechanical, physical, and biophysical properties, and an analysis of the covering of the nonwoven surface with fibers was conducted as well. The results confirmed that the structure of flax/cotton nonwovens is suitable to replace the nondegradable polypropylene layer of the face mask type II to improve its environmental performance.

3.
Materials (Basel) ; 16(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37241467

ABSTRACT

There is an increasing desire to use natural products that will be both effective and biodegradable. The aim of this work is to investigate the effect of modifying flax fibers with silicon compounds (silanes and polysiloxanes), as well as examining the effect of the mercerization process on their properties. Two types of polysiloxanes have been synthesized and confirmed by infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR). Scanning electron microscopy (SEM), FTIR, thermogravimetry analysis (TGA) and pyrolysis-combustion flow calorimetry (PCFC) tests of the fibers were performed. On the SEM pictures, flax fibers purified and covered with silanes were visible after treatment. FTIR analysis showed stable bonds between the fibers and the silicon compounds. Promising results of thermal stability were obtained. It was also found that modification had a positive effect on the flammability. The conducted research showed that the use of such modifications, in the context of using flax fibers for composites, can yield very good results.

4.
Molecules ; 26(17)2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34500826

ABSTRACT

The salinity of European soil is increasing every year, causing severe economic damage (estimated 1-3 million hectares in the enlarged EU). This study uses the biomass of halophytes-tall fescue (grass) and hemp of the Bialobrzeskie variety from saline soils-for bioenergy, second generation biofuels and designing new materials-fillers for polymer composites. In the bioethanol obtaining process, in the first stage, the grass and hemp biomass were pretreated with 1.5% NaOH. Before and after the treatment, the chemical composition was determined and the FTIR spectra and SEM pictures were taken. Then, the process of simultaneous saccharification and fermentation (SSF) was carried out. The concentration of ethanol for both the grass and hemp biomass was approx. 7 g·L-1 (14 g·100 g-1 of raw material). In addition, trials of obtaining green composites with halophyte biomass using polymers (PP) and biopolymers (PLA) as a matrix were performed. The mechanical properties of the composites (tensile and flexural tests) were determined. It was found that the addition of a compatibilizer improved the adhesion at the interface of PP composites with a hemp filler. In conclusion, the grass and hemp biomass were found to be an interesting and promising source to be used for bioethanol and biocomposites production. The use of annually renewable plant biomass from saline soils for biorefinering processes opens up opportunities for the development of a new value chains and new approaches to sustainable agriculture.


Subject(s)
Biotechnology/methods , Biomass , Ethanol/metabolism , Fermentation/physiology
5.
Materials (Basel) ; 14(13)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34202368

ABSTRACT

The study investigated the effectiveness of the combination of chemical and physical methods of natural fibers' modification. The long flax fibers were subjected to various types of modification. These were silanization, plasma modification and a combination of these methods. For the silanization process, two types of silanes were used: amino- and vinylsilane. The application of structurally different compounds allowed us to acquire knowledge about the effect of the modifier structure on its properties. Various properties of flax fibers were investigated, comparing the results before and after different modification processes. The flammability of prepared samples were tested by pyrolysis combustion flow calorimeter (PCFC). In the effect of the natural fibers' modifications, flammability was reduced even by 30%. The thermal stability of modified fibers increased. The FTIR tests of the gases released during thermal degradation of the tested fibers allowed us to determine the important compounds and prove a lower degree of flax-fiber decomposition after modification. Flax fibers were also tested to evaluate their physical properties (linear mass, average diameter, aspect ratio and hygroscopicity). Changes in surface morphology were observed by scanning electron microscope (SEM). The properties of natural fibers improved significantly, thus contributing to an increase in their suitability for the use in composites.

6.
Materials (Basel) ; 14(6)2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33801113

ABSTRACT

The development of novel flame retardants for cotton textiles that form a stable layer on textile fiber is of high economical and practical relevance. A novel flame retardant fluorinated phosphoric acid esters modified silicone resins for cotton modification were synthesized. The investigated phosphoric acid esters based compounds were substituted by a fluorinated chain or ring, and alkoxysilyl groups. The presence of alkoxysilyl groups allowed the formation of bonds with cellulose, while derivatives of phosphoric esters reduced the flammability of fabrics. Additionally, the presence of fluoride in their structures affected the hydrophobic properties. Cotton fabrics were modified in a simple one-step process by dip-coating method. The flame retardant properties of modified textiles were examined by performing microcalorimetric analysis, thermogravimetry analysis, and measuring oxygen index. The hydrophobicity was evaluated by measuring the water contact angle. The modified fabrics were characterized by SEM-EDS (Scanning Electron Microscopy with Energy Dispersive Spectroscopy) analysis and surface morphology. As a result of the tests, multifunctional fabrics were obtained.

7.
Polymers (Basel) ; 8(12)2016 Dec 02.
Article in English | MEDLINE | ID: mdl-30974695

ABSTRACT

This work presents the effectiveness of a phosphorus-containing flame retardant based on siloxane resin and ethylene-vinyl chloride copolymer as a back-coating of fabrics. The possibility of improving flame retardant efficiency of this composition by introducing fumed silica, montmorillonite, carbon nanotubes, and graphite was evaluated. The effect of each additive on the efficiency of the composition was examined separately. Flammability tests of flame retardant-coated fabrics (natural and synthetic) were carried out using pyrolysis combustion flow calorimetry (PCFC), cone calorimetry, and limiting oxygen index determination. An assessment of the ignitability of upholstered furniture containing flame retardant fabric, resistance to washing, antifungal activity, and some of the utility properties of the final newly-developed flame-retardant coating was conducted.

SELECTION OF CITATIONS
SEARCH DETAIL
...