Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Pathol ; 42(4): 725-64, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24705884

ABSTRACT

Vascular inflammation, infusion reactions, glomerulopathies, and other potentially adverse effects may be observed in laboratory animals, including monkeys, on toxicity studies of therapeutic monoclonal antibodies and recombinant human protein drugs. Histopathologic and immunohistochemical (IHC) evaluation suggests these effects may be mediated by deposition of immune complexes (ICs) containing the drug, endogenous immunoglobulin, and/or complement components in the affected tissues. ICs may be observed in glomerulus, blood vessels, synovium, lung, liver, skin, eye, choroid plexus, or other tissues or bound to neutrophils, monocytes/macrophages, or platelets. IC deposition may activate complement, kinin, and/or coagulation/fibrinolytic pathways and result in a systemic proinflammatory response. IC clearance is biphasic in humans and monkeys (first from plasma to liver and/or spleen, second from liver or spleen). IC deposition/clearance is affected by IC composition, immunomodulation, and/or complement activation. Case studies are presented from toxicity study monkeys or rats and indicate IHC-IC deposition patterns similar to those predicted by experimental studies of IC-mediated reactions to heterologous protein administration to monkeys and other species. The IHC-staining patterns are consistent with findings associated with generalized and localized IC-associated pathology in humans. However, manifestations of immunogenicity in preclinical species are generally not considered predictive to humans.


Subject(s)
Antigen-Antibody Complex/metabolism , Drug-Related Side Effects and Adverse Reactions , Vascular Diseases/pathology , Animals , Antibodies, Monoclonal/pharmacology , Blood Platelets/drug effects , Blood Platelets/metabolism , Complement C3/metabolism , Complement Membrane Attack Complex/metabolism , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Female , Haplorhini , Humans , Immunoglobulin G/metabolism , Immunoglobulin M/metabolism , Immunohistochemistry , Male , Monocytes/drug effects , Monocytes/metabolism , Neutrophils/drug effects , Neutrophils/metabolism , Phagocytosis/drug effects , Rats , Vascular Diseases/chemically induced
2.
Toxicol Pathol ; 42(1): 293-300, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24240973

ABSTRACT

This continuing education course was designed to provide an overview of the immunologic mechanisms involved in immunogenicity and hypersensitivity reactions following administration of biologics in nonclinical toxicity studies, the methods used to determine whether such reactions are occurring, and the associated clinical and anatomic pathology findings. Hypersensitivity reactions have classically been divided into type I, II, III, and IV reactions; type I and III reactions are those most often observed following administration of biologics. A variety of methods can be used to detect these reactions. Antemortem methods include hematology; detection of antidrug antibodies, circulating immune complexes and complement fragments, and immunoglobulin E in serum; tests for serum complement activity; and evaluation of complement receptor 1 on erythrocytes. Postmortem methods include routine light microscopy and electron microscopy, which can demonstrate typical findings associated with hypersensitivity reactions, and immunohistochemistry, which can detect the presence of immune complexes in tissues, including the detection of the test article. A final determination of whether findings are related to a hypersensitivity reaction in individual animals or across the entire study should rely on the overall weight of evidence, as findings indicative of these reactions are not necessarily consistent across all affected animals.


Subject(s)
Biological Products/administration & dosage , Biological Products/adverse effects , Drug Hypersensitivity , Animals , Antibodies/blood , Drug-Related Side Effects and Adverse Reactions/complications , Drug-Related Side Effects and Adverse Reactions/immunology , Humans , Immunoglobulin E/blood
3.
Toxicol Pathol ; 38(7): 1138-66, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20926828

ABSTRACT

Tissue cross-reactivity (TCR) studies are screening assays recommended for antibody and antibody-like molecules that contain a complementarity-determining region (CDR), primarily to identify off-target binding and, secondarily, to identify sites of on-target binding that were not previously identified. At the present time, TCR studies involve the ex vivo immunohistochemical (IHC) staining of a panel of frozen tissues from humans and animals, are conducted prior to dosing humans, and results are filed with the initial IND/CTA to support first-in-human clinical trials. In some cases, a robust TCR assay cannot be developed, and in these cases the lack of a TCR assay should not prevent a program from moving forward. The TCR assay by itself has variable correlation with toxicity or efficacy. Therefore, any findings of interest should be further evaluated and interpreted in the context of the overall pharmacology and safety assessment data package. TCR studies are generally not recommended for surrogate molecules or for comparability assessments in the context of manufacturing/cell line changes. Overall, the design, implementation, and interpretation of TCR studies should follow a case-by-case approach.


Subject(s)
Antibodies, Monoclonal/immunology , Cross Reactions/immunology , Drug Evaluation, Preclinical/methods , Animals , Antibodies, Monoclonal/pharmacology , Binding Sites, Antibody , Drug Design , Drug Discovery , Humans , Immunohistochemistry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...