Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731964

ABSTRACT

Cannabidiol (CBD) is a non-psychoactive compound derived from Cannabis sativa. It has demonstrated promising effects in combating inflammation and holds potential as a treatment for the progression of chronic inflammation. However, the clinical application of CBD is limited due to its poor solubility and bioavailability. This study introduces an effective method for preparing CBD-loaded solid lipid nanoparticles (CBD-SLNs) using a combination of low-energy hot homogenization and ultrasonication. We enhanced this process by employing statistical optimization with response surface methodology (RSM). The optimized CBD-SLN formulation utilizes glyceryl monostearate as the primary lipid component of the nanocarrier. The CBD-SLN formulation is screened as a potential tool for managing chronic inflammation. Stable, uniformly dispersed spherical nanoparticles with a size of 123 nm, a surface charge of -32.1 mV, an encapsulation efficiency of 95.16%, and a drug loading of 2.36% were obtained. The CBD-SLNs exhibited sustained release properties, ensuring prolonged and controlled CBD delivery, which could potentially amplify its therapeutic effects. Additionally, we observed that CBD-SLNs significantly reduced both reactive oxygen and nitrogen species and proinflammatory cytokines in chondrocyte and macrophage cell lines, with these inhibitory effects being more pronounced than those of free CBD. In conclusion, CBD-SLNs demonstrated superiority over free CBD, highlighting its potential as an effective delivery system for CBD.


Subject(s)
Cannabidiol , Cytokines , Inflammation , Nanoparticles , Cannabidiol/chemistry , Cannabidiol/pharmacology , Nanoparticles/chemistry , Cytokines/metabolism , Inflammation/drug therapy , Humans , Animals , Free Radicals , Mice , Drug Carriers/chemistry , Lipids/chemistry , Cell Line , Reactive Oxygen Species/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/administration & dosage , Liposomes
2.
J Drug Target ; : 1-19, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38634290

ABSTRACT

Nanoparticle (NP) functionalization with specific ligands enhances targeted cancer therapy and imaging by promoting receptor recognition and improving cellular uptake. This review focuses on recent research exploring the interaction between cancer cell-expressed chemokine receptor 4 (CXCR4) and ligand-conjugated NPs, utilising small molecules, peptides, and antibodies. Active NP targeting has shown improved tumour targeting and reduced toxicity, enabling precision therapy and diagnosis. However, challenges persist in the clinical translation of targeted NPs due to issues with biological response, tumour accumulation, and maintaining NP quality at an industrial scale. Biological and intratumoral barriers further hinder efficient NP accumulation in tumours, hampering translatability. To address these challenges, the academic community is refocusing efforts on understanding NP biological fate and establishing robust preclinical models. Future studies should investigate NP-body interactions, develop computational models, and identify optimal preclinical models. Establishing central NP research databases and fostering collaboration across disciplines is crucial to expediting clinical translation. Overcoming these hurdles will unlock the transformative potential of CXCR4-ligand-NP conjugates in revolutionising cancer treatment.

3.
Int J Biol Macromol ; 263(Pt 1): 130264, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368987

ABSTRACT

A response surface methodology based on the Box-Behnken design was employed to develop fucoxanthin (FX) delivery nanocarrier from alginate (ALG) and chitosan (CS). The FX-loaded ALG/CS nanoparticles (FX-ALG/CS-NPs) were fabricated using oil-in-water emulsification and ionic gelation. The optimal formulation consisted of an ALG:CS mass ratio of 0.015:1, 0.71 % w/v Tween™ 80, and 5 mg/mL FX concentrations. The resulting FX-ALG/CS-NPs had a size of 227 ± 23 nm, a zeta potential of 35.3 ± 1.7 mV, and an encapsulation efficiency of 81.2 ± 2.8 %. These nanoparticles exhibited enhanced stability under simulated environmental conditions and controlled FX release in simulated gastrointestinal fluids. Furthermore, FX-ALG/CS-NPs showed increased in vitro oral bioaccessibility, gastrointestinal stability, antioxidant activity, anti-inflammatory effect, and cytotoxicity against various cancer cells. The findings suggest that ALG/CS-NPs are effective nanocarriers for the delivery of FX in nutraceuticals, functional foods, and pharmaceuticals.


Subject(s)
Chitosan , Nanoparticles , Xanthophylls , Chitosan/pharmacology , Alginates/pharmacology , Drug Carriers
4.
ACS Appl Bio Mater ; 6(12): 5426-5441, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37956113

ABSTRACT

In this study, we synthesized hollow porous iron oxide nanoparticles (HPIONPs) with surface modifications using polymers, specifically chitosan (Chi), polyethylene glycol (PEG), and alginate (Alg), to improve colloidal stability and biocompatibility. For colloidal stability, Alg-coated HPIONPs maintained size stability up to 24 h, with only an 18% increase, while Chi, PEG, and uncoated HPIONPs showed larger size increases ranging from 64 to 140%. The biocompatibility of polymer-coated HPIONPs was evaluated by assessing their cell viability, genotoxicity, and hemocompatibility. Across tested concentrations from 6.25 to 100 µg/mL, both uncoated and polymer-coated HPIONPs showed minimal cytotoxicity against three normal cell lines: RAW264.7, 3T3-L1, and MCF10A, with cell viability exceeding 80% at the highest concentration. Notably, polymer-coated HPIONPs exhibited nongenotoxicity based on the micronucleus assay and showed hemocompatibility, with only 2-3% hemolysis in mouse blood, in contrast to uncoated HPIONPs which exhibited 4-5%. Furthermore, we evaluated the cytotoxicity of HPIONPs on MDA-MB-231 breast cancer cells after a 2 h exposure to a stationary magnetic field, and the results showed the highest cell death of 38 and 29% when treated with uncoated and polymer-coated HPIONPs at 100 µg/mL, respectively. This phenomenon is attributed to iron catalyzing the Fenton and Haber-Weiss reactions, leading to reactive oxygen species (ROS)-dependent cell death (r ≥ 0.98). In conclusion, the hydrothermal synthesis and subsequent surface modification of HPIONPs with polymers showed improved colloidal stability, nongenotoxicity, and hemocompatibility compared to uncoated HPIONPs while maintaining closely similar levels of cytotoxicity against both normal and cancer cells. This research has paved the way for further exploration of polymer coatings to enhance the overall performance and safety profile of magnetic nanoparticles in delivering anticancer drugs.


Subject(s)
Antineoplastic Agents , Chitosan , Mice , Animals , Polymers/chemistry , Porosity , Polyethylene Glycols/chemistry , Chitosan/chemistry , Magnetic Iron Oxide Nanoparticles
5.
MethodsX ; 11: 102318, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37608960

ABSTRACT

The current literature mostly contains relatively vague descriptions of techniques for implementing in vitro magnetic targeting delivery of iron oxide nanoparticles (IONPs), leading to irreproducible processes and incomparable findings. This discrepancy often arises from the varying exposure of IONPs to the non-uniform magnetic field and differences in the concentration of the polymer-coated IONPs. Hence, we meticulously designed and built a system comprising a platform constructed from polyoxymethylene sheets, which securely holds the permanent magnets, and the cell culture plate. We also tailored the preparation process of the IONPs and the in vitro toxicity studies. The inherent characteristics of IONPs are further enhanced by their coating with natural polymers, alginate (Alg) and chitosan (CS).•The design and construction of the platform were carried out using a laser engraving/cutting machine along with graphic design software. The precise locations of the permanent magnets relative to the cell culture plate were determined via a Gaussmeter.•The quantities of the components in the formulation and the method for fabricating the CS/Alg-coated IONPs (CS/Alg-IONPs) were optimized to ensure that the desired physicochemical properties were obtained.•The cultivation and cytotoxicity evaluation of the fabricated CS/Alg-IONPs against MCF-7 breast cancer cells were described.

6.
Int J Pharm ; 640: 123037, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37172632

ABSTRACT

Nanotechnology plays an integral role in multimodal analgesia. In this study, we co-encapsulated metformin (Met) and curcumin (Cur) into chitosan/alginate (CTS/ALG) nanoparticles (NPs) at their synergistic drug ratio by applying response surface methodology. The optimized Met-Cur-CTS/ALG-NPs were achieved with Pluronic® F-127 2.33 % (w/v), Met 5.91 mg, and CTS:ALG mass ratio 0.05:1. The prepared Met-Cur-CTS/ALG-NPs had 243 nm particle size, -21.6 mV zeta potential, 32.6 and 44.2 % Met and Cur encapsulations, 19.6 and 6.8 % Met and Cur loading, respectively, and 2.9:1 Met:Cur mass ratio. Met-Cur-CTS/ALG-NPs displayed stability under simulated gastrointestinal (GI) fluid conditions and during storage. In vitro release study of Met-Cur-CTS/ALG-NPs in simulated GI fluids showed sustained release, with Met exhibiting Fickian diffusion and Cur demonstrating non-Fickian diffusion following the Korsmeyer-Peppas model. Met-Cur-CTS/ALG-NPs exhibited increased mucoadhesion and improved cellular uptake in Caco-2 cells. Additionally, Met-Cur-CTS/ALG-NPs exhibited better anti-inflammatory effects in lipopolysaccharide-stimulated RAW 264.7 macrophage and BV-2 microglial cells than the equivalent amount of the Met-Cur physical mixture, indicating a greater ability to modulate peripheral and central immune mechanisms of pain. In the mouse formalin-induced pain model, Met-Cur-CTS/ALG-NPs administered orally exhibited better attenuation of pain-like behaviors and proinflammatory cytokine release compared to the Met-Cur physical mixture. Furthermore, Met-Cur-CTS/ALG-NPs did not induce significant side effects in mice at therapeutic doses. Altogether, the present study establishes a CTS/ALG nano-delivery system for Met-Cur combination against pain with improved efficacy and safety.


Subject(s)
Chitosan , Curcumin , Metformin , Nanoparticles , Humans , Mice , Animals , Drug Carriers , Curcumin/pharmacology , Chitosan/pharmacology , Caco-2 Cells , Alginates/pharmacology , Particle Size
7.
Int J Biol Macromol ; 242(Pt 1): 124673, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37137353

ABSTRACT

Magnetic drug targeting can be a strategy for effectively delivering phytochemicals in cancer treatment. Here, we demonstrate the benefit of magnetic targeting with superparamagnetic iron oxide nanoparticles for cytotoxicity enhancement of lutein (LUT) against breast cancer cells. Fabrication of LUT-loaded chitosan/alginate iron oxide nanoparticles (LUT-CS/Alg-Fe3O4-NPs) was optimized by a statistical approach using response surface methodology based on the Box-Behnken design. The optimized LUT-CS/Alg-Fe3O4-NPs with a balance among LUT concentration, copolymer coating, and iron ion concentration exhibited controlled size, narrow size distribution, better crystallinity, excellent saturation magnetization, and sustained-release profile. The negligible magnetic coercivity and remanent magnetization confirmed the superparamagnetism of the prepared NPs. The optimized LUT-CS/Alg-Fe3O4-NPs were biocompatible while exhibiting a significantly enhanced cytotoxicity towards breast cancer MCF-7 cells upon exposure to a permanent magnet compared to free LUT with a 4-fold increase, suggesting the potential of LUT-CS/Alg-Fe3O4-NPs as magnetically targeted delivery for breast cancer.


Subject(s)
Breast Neoplasms , Chitosan , Nanoparticles , Humans , Female , Breast Neoplasms/drug therapy , Alginates , Lutein
8.
Pharmaceutics ; 15(2)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36839794

ABSTRACT

Hexahydrocurcumin-encapsulated chitosan nanoparticles (HHC-CS-NPs) were formulated by oil-in-water emulsification and ionotropic gelation and optimized using the Box-Behnken design. The particle size, zeta potential, and encapsulation efficiency of the optimized HHC-CS-NPs were 256 ± 14 nm, 27.3 ± 0.7 mV, and 90.6 ± 1.7%, respectively. The TEM analysis showed a spherical shape and a dense structure with a narrow size distribution. The FT-IR analysis indicated no chemical interaction between the excipients and the drugs in the nanoparticles, but the existence of the drugs was molecularly dispersed in the nanoparticle matrices. The drug release profile showed a preliminary burst release followed by a sustained release under simulated gastrointestinal (GI) and physiological conditions. A stability study suggested that the HHC-CS-NPs were stable under UV light, simulated GI, and body fluids. The in vitro bioaccessibility and bioavailability of the HHC-CS-NPs were 2.2 and 6.1 times higher than those of the HHC solution, respectively. The in vitro evaluation of the antioxidant, anti-inflammatory, and cytotoxic effects of the optimized HHC-CS-NPs demonstrated that the CS-NPs significantly improved the biological activities of HHC in radical scavenging, hemolysis protection activity, anti-protein denaturation, and cytotoxicity against MDA-MB-231 breast cancer cells. Western blot analysis showed that the apoptotic protein expression of Bax, cytochrome C, caspase-3, and caspase-9, were significantly up-regulated, whereas the anti-apoptotic protein Bcl-2 expression was down-regulated in the HHC-CS-NP-treated cells. Our findings suggest that the optimized HHC-CS-NPs can be further developed as an efficient oral treatment for breast cancer.

9.
Pharmaceutics ; 14(12)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36559173

ABSTRACT

Favipiravir (FVR) is a repurposed antiviral drug for treating mild to moderate cases of the novel coronavirus disease 2019 (COVID-19). However, its poor solubility and permeability limit its clinical efficacy. To overcome its physicochemical and pharmacokinetic limitations, we statistically designed a mucoadhesive chitosan-alginate nanoparticles (MCS-ALG-NPs) as a new carrier for FVR using response surface methodology, which provided suitable characteristics for transmucosal delivery. The use of mucoadhesive polymers for intranasal administration promotes the residence time and contact of FVR in the mucus membrane. The optimized FVR-MCS-ALG-NPs demonstrated superior mucoadhesion, higher permeation and deposition in the nasal mucosa, and a significant increase in the inhibition of viral replication over 35-fold compared with free FVR. The overall results suggest that MCS-ALG-NPs could be used as an effective mucoadhesive carrier to enhance the activity of FVR against COVID-19.

10.
Polymers (Basel) ; 14(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36559930

ABSTRACT

This study shows the effectiveness of magnetic-guide targeting in the delivery of curcumin diethyl γ-aminobutyrate (CUR-2GE), a prodrug of curcumin (CUR) previously synthesized to overcome unfavorable physicochemical properties of CUR. In this study, chitosan (Ch)-coated iron oxide nanoparticles (Ch-IONPs) were fabricated and optimized using Box-Behnken design-based response surface methodology for delivery of CUR-2GE. Ch was used as a coating material on the nanoparticle surface to avoid aggregation. The optimized condition for preparing Ch-IONPs consisted of using 4 mg Ch fabricated at pH 11 under a reaction temperature of 85 °C. The optimized Ch-IONPs were successfully loaded with CUR-2GE with sufficient loading capacity (1.72 ± 0.01%) and encapsulation efficiency (94.9 ± 0.8%). The obtained CUR-2GE-loaded Ch-IONPs (CUR-2GE-Ch-IONPs) exhibited desirable characteristics including a particle size of less than 50 nm based on TEM images, superparamagnetic property, highly crystalline IONP core, sufficient stability, and sustained-release profile. In the presence of permanent magnets, CUR-2GE-Ch-IONPs significantly increased cellular uptake and cytotoxicity toward MDA-MB-231 with a 12-fold increase in potency compared to free CUR-2GE, indicating the potential of magnetic-field assisted delivery of CUR-2GE-Ch-IONPs for the treatment of triple-negative breast cancer.

11.
Sci Rep ; 12(1): 9713, 2022 06 11.
Article in English | MEDLINE | ID: mdl-35690654

ABSTRACT

Metformin is a well-tolerated antidiabetic drug and has recently been repurposed for numerous diseases, including pain. However, a higher dose of metformin is required for effective analgesia, which can potentiate its dose-dependent gastrointestinal side effects. Curcumin is a natural polyphenol and has beneficial therapeutic effects on pain. Curcumin has been used as an analgesic adjuvant with several analgesic drugs, allowing synergistic antinociceptive effects. Nevertheless, whether curcumin can exert synergistic analgesia with metformin is still unknown. In the present study, the nature of curcumin-metformin anti-inflammatory interaction was evaluated in in vitro using lipopolysaccharide-induced RAW 264.7 macrophage and BV-2 microglia cells. In both macrophage and microglia, curcumin effectively potentiates the anti-inflammatory effects of metformin, indicating potential synergistic effects in both peripheral and central pathways of pain. The nature of the interaction between curcumin and metformin was further recapitulated using a mouse model of formalin-induced pain. Coadministration of curcumin and metformin at a 1:1 fixed ratio of their ED50 doses significantly reduced the dose required to produce a 50% effect compared to the theoretically required dose in phase II of the formalin test with a combination index value of 0.24. Besides, the synergistic interaction does not appear to involve severe CNS side effects indicated by no motor alterations, no alterations in short-term and long-term locomotive behaviors, and the general well-being of mice. Our findings suggest that curcumin exerts synergistic anti-inflammation with metformin with no potential CNS adverse effects.


Subject(s)
Curcumin , Metformin , Analgesics/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Curcumin/pharmacology , Curcumin/therapeutic use , Humans , Metformin/therapeutic use , Pain/drug therapy
12.
Polymers (Basel) ; 14(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35567007

ABSTRACT

Turmeric oil (TO) exhibits various biological activities with limited therapeutic applications due to its instability, volatility, and poor water solubility. Here, we encapsulated TO in chitosan/alginate nanocapsules (CS/Alg-NCs) using o/w emulsification to enhance its physicochemical characteristics, using poloxamer 407 as a non-ionic surfactant. TO-loaded CS/Alg-NCs (TO-CS/Alg-NCs) were prepared with satisfactory features, encapsulation efficiency, release characteristics, and cytotoxicity against breast cancer cells. The average size of the fabricated TO-CS/Alg-NCs was around 200 nm; their distribution was homogenous, and their shapes were spherical, with smooth surfaces. The TO-CS/Alg-NCs showed a high encapsulation efficiency, of 70%, with a sustained release of TO at approximately 50% after 12 h at pH 7.4 and 5.5. The TO-CS/Alg-NCs demonstrated enhanced cytotoxicity against two breast cancer cells, MDA-MB-231 and MCF-7, compared to the unencapsulated TO, suggesting that CS/Alg-NCs are potential nanocarriers for TO and can serve as prospective candidates for in vivo anticancer activity evaluation.

13.
Carbohydr Polym ; 288: 119401, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35450653

ABSTRACT

Chitosan (Ch)-coated nanostructured lipid carriers (NLCs) have great potential for transdermal delivery with high localization of chemotherapeutics in breast cancer. This study used tetrahydrocurcumin (THC), a primary metabolite of curcumin with enhanced antioxidant and anticancer properties, as a model compound to prepare NLCs. Response surface methodology was employed to optimize THC-loaded Ch-coated NLCs (THC-Ch-NLCs) fabricated by high-shear homogenization. The optimized THC-Ch-NLCs had particle size of 244 ± 18 nm, zeta potential of -17.5 ± 0.5 mV, entrapment efficiency of 76.6 ± 0.2% and drug loading of 0.28 ± 0.01%. In vitro release study of THC-Ch-NLCs showed sustained release following the Korsmeyer-Peppas model with Fickian and non-Fickian diffusion at pH 7.4 and 5.5, respectively. THC-Ch-NLCs demonstrated significantly enhanced in vitro skin permeation, cell uptake, and remarkable cytotoxicity toward MD-MBA-231 breast cancer cells compared to the unencapsulated THC, suggesting Ch-NLCs as potential transdermal nanocarriers of THC for triple-negative breast cancer treatment.


Subject(s)
Breast Neoplasms , Chitosan , Curcumin , Nanostructures , Female , Humans , Breast Neoplasms/drug therapy , Chitosan/chemistry , Curcumin/analogs & derivatives , Curcumin/pharmacology , Drug Carriers/chemistry , Lipids/chemistry , Nanostructures/chemistry , Particle Size
14.
Food Chem ; 374: 131731, 2022 Apr 16.
Article in English | MEDLINE | ID: mdl-34896958

ABSTRACT

The chitosan (CTS) solutions supplemented with chitosan-montmorillonite (CTS-MMT) nanocomposites at various concentrations were prepared for free-standing films by the casting technique. Incorporating 2% CTS-MMT nanocomposites into the free-standing CTS films could improve the water-resistance and oxygen barrier of the film. For the postharvest experiment, CTS and CTS supplemented with CTS-MMT nanocomposite solutions were applied as banana fruit coating by the dipping technique. The CTS supplemented with 2% CTS-MMT showed a significant retarding in peel color change, reduced electrolyte leakage, and MDA content, while CTS coating could maintain fruit firmness and reduce plasma membrane destruction for only the first few days. In addition, the CTS supplemented with 2% CTS-MMT coating could reduce ethylene production and respiration rate of the banana fruit. Overall results suggest that the CTS supplemented with 2% CTS-MMT nanocomposites is a novel coating material for maintaining the postharvest quality of 'Hom Thong' banana fruit.


Subject(s)
Chitosan , Musa , Nanocomposites , Bentonite , Fruit
15.
Pharmaceutics ; 15(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36678739

ABSTRACT

Folate receptors (FRs) highly expressed in breast cancers can be used as a recognized marker for preventing off-target delivery of chemotherapeutics. In this study, folic acid (FA)-grafted chitosan-alginate nanocapsules (CS-Alg-NCs) loaded with turmeric oil (TO) were developed for breast cancer targeting. CS was successfully conjugated with FA via an amide bond with a degree of substitution at 12.86%. The TO-loaded FA-grafted CS-Alg-NCs (TO-FA-CS-Alg-NCs) optimized by Box-Behnken design using response surface methodology had satisfactory characteristics with homogenous particle size (189 nm) and sufficient encapsulation efficiency and loading capacity (35.9% and 1.82%, respectively). In vitro release study of the optimized TO-FA-CS-Alg-NCs showed a sustained TO release following the Korsmeyer-Peppas model with a Fickian diffusion mechanism at pH 5.5 and 7.4. The TO-FA-CS-Alg-NCs showed lower IC50 than ungrafted TO-CS-Alg-NCs and unencapsulated TO against MDA-MB-231 and MCF-7 breast cancer cells, suggesting that FA-CS-Alg-NCs can improve anticancer activity of TO through its active targeting to the high FRs expressing breast cancers.

16.
Polymers (Basel) ; 13(2)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33430269

ABSTRACT

A hyaluronic acid-grafted poly(N-isopropylacrylamide) (HA-pNIPAM) was synthesized as a polymeric nanogel platform for encapsulation and delivery of hydrophobic bioactive compounds using curcumin as a model drug. As demonstrated by transmission electron microscopy and dynamic light scattering techniques, the HA-pNIPAM was simply assembled into spherical nano-sized particles with the thermoresponsive behavior. The success of curcumin aqueous solubilization was confirmed by fluorescent spectroscopy. The resulting nanogel formulation enhanced the aqueous solubility and uptake into NIH-3T3 cells of curcumin. This nanogel formulation also demonstrates cytocompatibility against NIH-3T3 cells, which deems it safe as a delivery vehicle. Moreover, the formulation has a slight skin-protection effect using an artificial skin equivalence model. The curcumin-loaded HA-pNIPAM nanogel showed an anti-proliferative activity against MDA-MB-231, Caco-2, HepG2, HT-29, and TNF-α-induced hyperproliferation of keratinocyte (HaCaT) cells. The thermoresponsive HA-pNIPAM nanogel reported here could be further optimized as a platform for controlled-release systems to encapsulate pharmaceuticals for therapeutic applications.

17.
Carbohydr Polym ; 256: 117426, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33483016

ABSTRACT

Curcumin diethyl disuccinate (CDD) is an ester prodrug of curcumin that has better chemical stability in phosphate buffer (pH 7.4) and anticancer activities against MDA-MB-231 human breast cancer cells and Caco-2 cells than curcumin. However, a major drawback of CDD is its poor water solubility and low bioavailability in the gastrointestinal tract. To overcome these problems, a nanoformulation was developed using chitosan/alginate nanoparticles (CANPs) under the optimal condition as previously derived by statistical optimization. The CDD-loaded CANPs (CDD-CANPs) were found to exhibit good stability after exposure to simulated digestive fluids and ultraviolet light, and a sustained-release profile of CDD in the simulated digestive and body fluids. The in vitro release pattern fitted well to the Peppas-Sahlin model, indicating that the release of CDD was mainly governed by diffusion. Compared to free CDD, the CDD-CANPs showed better stability, bioaccessibility, bioavailability, cellular uptake, and cytotoxicity against HepG2 cells.


Subject(s)
Alginates/chemistry , Chitosan/chemistry , Curcumin/analogs & derivatives , Drug Carriers , Nanoparticles/chemistry , Succinates/chemistry , Biological Availability , Cell Line, Tumor , Curcumin/chemistry , Hep G2 Cells , Humans , Inhibitory Concentration 50 , Kinetics , Nanotechnology/methods , Particle Size , Prodrugs , Solubility , Ultraviolet Rays
18.
Biomolecules ; 10(1)2020 01 02.
Article in English | MEDLINE | ID: mdl-31906490

ABSTRACT

Curcumin diglutaric acid-loaded polyethylene glycol-chitosan oligosaccharide-coated superparamagnetic iron oxide nanoparticles (CG-PEG-CSO-SPIONs) were fabricated by co-precipitation and optimized using a Box-Behnken statistical design in order to achieve the minimum size, optimal zeta potential (≥ ±20 mV), and maximum loading efficiency and capacity. The results demonstrated that CG-PEG-CSO-SPIONs prepared under the optimal condition were almost spherical in shape with a smooth surface, a diameter of 130 nm, zeta potential of 30.6 mV, loading efficiency of 83.3%, and loading capacity of 8.3%. The vibrating sample magnetometer results of the optimized CG-PEG-CSO-SPIONs showed a superparamagnetic behavior. Fourier transform infrared spectroscopy and X-ray diffraction analyses indicated that the CG physically interacted with PEG-CSO-SPIONs. In addition, the CG-PEG-CSO-SPIONs could be stored dry for up to 12 weeks or in aqueous solution for up to 4 days at either 4 °C or 25 °C with no loss of stability. The CG-PEG-CSO-SPIONs exhibited a sustained release profile up to 72 h under simulated physiological (pH 7.4) and tumor extracellular (pH 5.5) environments. Furthermore, the CG-PEG-CSO-SPIONs showed little non-specific protein binding in the simulated physiological environment. The CG-PEG-CSO-SPIONs enhanced the cellular uptake and cytotoxicity of CG against human colorectal adenocarcinoma HT-29 cells compared to free CG, and more CG was delivered to the cells after applying an external magnetic field. The overall results suggest that PEG-CSO-SPIONs have potential to be used as a novel drug delivery system for CG.


Subject(s)
Chitosan/chemistry , Drug Delivery Systems/methods , Polyethylene Glycols/chemistry , Cell Line, Tumor , Curcumin/chemistry , Curcumin/pharmacology , Humans , Magnetic Iron Oxide Nanoparticles/chemistry , Magnetite Nanoparticles/chemistry , Nanoparticles/chemistry , Particle Size , Spectroscopy, Fourier Transform Infrared/methods
19.
Molecules ; 24(7)2019 Apr 09.
Article in English | MEDLINE | ID: mdl-30970577

ABSTRACT

Psoriasis is a chronic inflammatory skin disease characterized by hyperproliferation of the epidermal cells and is clinically presented as thick, bright red to pink plaques with a silvery scale. Photodynamic therapy (PDT) using visible light has become of increasing interest in the treatment of inflammatory skin diseases. In this study, we demonstrate that a combination of curcumin-loaded chitosan/alginate nanoparticles (Cur-CS/Alg NPs) and blue light emitting diodes (LED) light irradiation effectively suppressed the hyperproliferation of tumor necrosis factor-alpha (TNF-α)-induced cultured human kerlatinocyte (HaCaT) cells. The Cur-CS/Alg NPs were fabricated by emulsification of curcumin in aqueous sodium alginate solution and ionotropic gelation with calcium chloride and chitosan using an optimized formulation derived from a Box-Behnken design. The fabricated Cur-CS/Alg NPs were characterized for their particle size, zeta potential, encapsulation efficiency, and loading capacity. The surrogate 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, to measure the relative number of viable cells, showed that the CS/Alg NPs were nontoxic to normal HaCaT cells, while 0.05 µg/mL and 0.1 µg/mL of free curcumin and Cur-CS/Alg NPs inhibited the hyperproliferation of HaCaT cells induced by TNF-α. However, the Cur-CS/Alg NPs demonstrated a stronger effect than the free curcumin, especially when combined with blue light irradiation (10 J/cm²) from an LED-based illumination device. Therefore, the Cur-CS/Alg NPs with blue LED light could be potentially developed into an effective PDT system for the treatment of psoriasis.


Subject(s)
Cell Proliferation , Drug Delivery Systems , Keratinocytes/metabolism , Light , Nanoparticles/chemistry , Psoriasis/therapy , Tumor Necrosis Factor-alpha/pharmacology , Alginates/chemistry , Alginates/pharmacology , Cell Line, Transformed , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Chitosan/chemistry , Chitosan/pharmacology , Curcumin/chemistry , Curcumin/pharmacology , Humans , Keratinocytes/physiology , Psoriasis/metabolism , Psoriasis/pathology , Tumor Necrosis Factor-alpha/metabolism
20.
Int J Biol Macromol ; 131: 1125-1136, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30902713

ABSTRACT

Chitosan/alginate nanoparticles (CANPs) were formulated to encapsulate curcumin diethyl diglutarate (CDG) for oral delivery. CDG-loaded CANPs (CDG-CANPs) were prepared by o/w emulsification and ionotropic gelation. The optimization of CDG-CANPs was successfully performed by response surface methodology. The characteristics including photostability, storage stability, digestive stability, in vitro digestibility, bioaccessibility and in vitro uptake in Caco-2 cells of free CDG and CDG-CANPs were investigated. The optimal CDG-CANPs could be prepared by chitosan/alginate mass ratio of 0.065:1, 1% (w/v) Pluronic®F127 and 4.5 mg/mL of CDG. The optimized nanoparticles had the particle size, zeta potential, encapsulation efficiency and loading capacity of 215 nm, -24.1 mV, 85% and 27%, respectively. The CDG-CANPs showed better stability under UV irradiation and thermal exposure compared with free CDG. The CDG-CANPs had stability up to 3 months at 4 °C. The in vitro release profile showed sustained-release manner and best fit with the Korsmeyer-Peppas kinetic model, indicating the Fickian diffusion mechanism. Nanoparticle encapsulation significantly enhanced in vitro digestibility and bioaccessibility under simulated gastrointestinal conditions and cellular uptake of CDG. The overall results suggest that CANPs are promising candidates for encapsulation, protection and controlled release of CDG, a hydrophobic compound, with an improvement of physicochemical stabilities, digestibility, bioaccessibility and cellular uptake.


Subject(s)
Alginates/chemistry , Chitosan/chemistry , Curcumin/analogs & derivatives , Nanoparticles/chemistry , Succinates/chemistry , Chemical Phenomena , Curcumin/chemistry , Drug Carriers/chemistry , Kinetics , Molecular Structure , Nanoparticles/ultrastructure , Particle Size , Spectrum Analysis , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...