Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 11539, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30068934

ABSTRACT

Facultative parthenogenesis (FP) is asexual reproduction in plant and animal species that would otherwise reproduce sexually. This process in vertebrates typically results from automictic development (likely terminal fusion) and is phylogenetically widespread. In squamate reptiles and chondrichthyan fishes, FP has been reported to occur in nature and can result in the production of reproductively viable offspring; suggesting that it is of ecological and evolutionary significance. However, terminal fusion automixis is believed to result in near genome-wide reductions in heterozygosity; thus, FP seems likely to affect key phenotypic characters, yet this remains almost completely unstudied. Snake venom is a complex phenotypic character primarily used to subjugate prey and is thus tightly linked to individual fitness. Surprisingly, the composition and function of venom produced by a parthenogenetic pitviper exhibits a high degree of similarity to that of its mother and conspecifics from the same population. Therefore, the apparent loss of allelic diversity caused by FP appears unlikely to have a significant impact on the prey-capturing ability of this snake. Accordingly, the pitviper offspring produced by FP retained complex phenotypic characteristics associated with fitness. This result reinforces the potential ecological and evolutionary importance of FP and questions our understanding of the inheritance of venom-associated genes.


Subject(s)
Crotalid Venoms/chemistry , Crotalinae , Parthenogenesis , Poisons/analysis , Animals , Chromatography, High Pressure Liquid , Electrophoresis, Gel, Two-Dimensional , Feeding Behavior , Female , Mass Spectrometry
2.
J Bacteriol ; 188(3): 1134-42, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16428417

ABSTRACT

Bacteriophage genomic evolution has been largely characterized by rampant, promiscuous horizontal gene transfer involving both homologous and nonhomologous source DNA. This pattern has emerged through study of the tailed double-stranded DNA (dsDNA) phages and is based upon a sparse sampling of the enormous diversity of these phages. The single-stranded DNA phages of the family Microviridae, including phiX174, appear to evolve through qualitatively different mechanisms, possibly as result of their strictly lytic lifestyle and small genome size. However, this apparent difference could reflect merely a dearth of relevant data. We sought to characterize the forces that contributed to the molecular evolution of the Microviridae and to examine the genetic structure of this single family of bacteriophage by sequencing the genomes of microvirid phage isolated on a single bacterial host. Microvirids comprised 3.5% of the detectable phage in our environmental samples, and sequencing yielded 42 new microvirid genomes. Phylogenetic analysis of the genes contained in these and five previously described microvirid phages identified three distinct clades and revealed at least two horizontal transfer events between clades. All members of one clade have a block of five putative genes that are not present in any member of the other two clades. Our data indicate that horizontal transfer does contribute to the evolution of the microvirids but is both quantitatively and qualitatively different from what has been observed for the dsDNA phages.


Subject(s)
Coliphages/genetics , Evolution, Molecular , Gene Transfer, Horizontal , Genome, Viral , Coliphages/pathogenicity , Genes, Viral/genetics , Genetic Variation/genetics , Microviridae/genetics , Molecular Sequence Data , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...