Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 903: 166149, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37567315

ABSTRACT

Carbon dioxide (CO2) uptake by plant photosynthesis, referred to as gross primary production (GPP) at the ecosystem level, is sensitive to environmental factors, including pollutant exposure, pollutant uptake, and changes in the scattering of solar shortwave irradiance (SWin) - the energy source for photosynthesis. The 2020 spring lockdown due to COVID-19 resulted in improved air quality and atmospheric transparency, providing a unique opportunity to assess the impact of air pollutants on terrestrial ecosystem functioning. However, detecting these effects can be challenging as GPP is influenced by other meteorological drivers and management practices. Based on data collected from 44 European ecosystem-scale CO2 flux monitoring stations, we observed significant changes in spring GPP at 34 sites during 2020 compared to 2015-2019. Among these, 14 sites showed an increase in GPP associated with higher SWin, 10 sites had lower GPP linked to atmospheric and soil dryness, and seven sites were subjected to management practices. The remaining three sites exhibited varying dynamics, with one experiencing colder and rainier weather resulting in lower GPP, and two showing higher GPP associated with earlier spring melts. Analysis using the regional atmospheric chemical transport model (LOTOS-EUROS) indicated that the ozone (O3) concentration remained relatively unchanged at the research sites, making it unlikely that O3 exposure was the dominant factor driving the primary production anomaly. In contrast, SWin increased by 9.4 % at 36 sites, suggesting enhanced GPP possibly due to reduced aerosol optical depth and cloudiness. Our findings indicate that air pollution and cloudiness may weaken the terrestrial carbon sink by up to 16 %. Accurate and continuous ground-based observations are crucial for detecting and attributing subtle changes in terrestrial ecosystem functioning in response to environmental and anthropogenic drivers.

2.
Philos Trans R Soc Lond B Biol Sci ; 375(1810): 20190747, 2020 10 26.
Article in English | MEDLINE | ID: mdl-32892724

ABSTRACT

In summer 2018, Europe experienced a record drought, but it remains unknown how the drought affected ecosystem carbon dynamics. Using observations from 34 eddy covariance sites in different biomes across Europe, we studied the sensitivity of gross primary productivity (GPP) to environmental drivers during the summer drought of 2018 versus the reference summer of 2016. We found a greater drought-induced decline of summer GPP in grasslands (-38%) than in forests (-10%), which coincided with reduced evapotranspiration and soil water content (SWC). As compared to the 'normal year' of 2016, GPP in different ecosystems exhibited more negative sensitivity to summer air temperature (Ta) but stronger positive sensitivity to SWC during summer drought in 2018, that is, a stronger reduction of GPP with soil moisture deficit. We found larger negative effects of Ta and vapour pressure deficit (VPD) but a lower positive effect of photosynthetic photon flux density on GPP in 2018 compared to 2016, which contributed to reduced summer GPP in 2018. Our results demonstrate that high temperature-induced increases in VPD and decreases in SWC aggravated drought impacts on GPP. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Subject(s)
Atmosphere/analysis , Climate Change , Droughts , Forests , Grassland , Plant Physiological Phenomena , Europe , Seasons
3.
Philos Trans R Soc Lond B Biol Sci ; 375(1810): 20190527, 2020 10 26.
Article in English | MEDLINE | ID: mdl-32892725

ABSTRACT

Severe drought events are known to cause important reductions of gross primary productivity (GPP) in forest ecosystems. However, it is still unclear whether this reduction originates from stomatal closure (Stomatal Origin Limitation) and/or non-stomatal limitations (Non-SOL). In this study, we investigated the impact of edaphic drought in 2018 on GPP and its origin (SOL, NSOL) using a dataset of 10 European forest ecosystem flux towers. In all stations where GPP reductions were observed during the drought, these were largely explained by declines in the maximum apparent canopy scale carboxylation rate VCMAX,APP (NSOL) when the soil relative extractable water content dropped below around 0.4. Concurrently, we found that the stomatal slope parameter (G1, related to SOL) of the Medlyn et al. unified optimization model linking vegetation conductance and GPP remained relatively constant. These results strengthen the increasing evidence that NSOL should be included in stomatal conductance/photosynthesis models to faithfully simulate both GPP and water fluxes in forest ecosystems during severe drought. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Subject(s)
Atmosphere/analysis , Climate Change , Droughts , Forests , Trees/physiology , Europe , Plant Stomata/physiology
4.
J Geophys Res Biogeosci ; 120(3): 502-512, 2015 Mar.
Article in English | MEDLINE | ID: mdl-27478715

ABSTRACT

Soil respiration and its biotic and abiotic drivers have been an important research topic in recent years. While the bulk of these efforts has focused on the emission of CO2 from soils, the production and subsequent transport of CO2 from soil to atmosphere received far less attention. However, to understand processes underlying emissions of CO2 from terrestrial ecosystems, both processes need to be fully evaluated. In this study, we tested to what extent the transport of CO2 in a grassland site in the Austrian Alps could be modeled based on the common assumption that diffusion is the main transport mechanism for trace gases in soils. Therefore, we compared the CO2 efflux calculated from the soil CO2 concentration gradient with the CO2 efflux from chamber measurements. We used four commonly used diffusion-driven models for the flux-gradient approach. Models generally underestimated the soil chamber effluxes and their amplitudes, indicating that processes other than diffusion were responsible for the transport of CO2. We further observed that transport rates correlated well with irradiation and, below a soil moisture content of 33%, with wind speed. This suggests that mechanisms such as bulk soil air transport, due to pressure pumping or thermal expansion of soil air due to local surface heating, considerably influence soil CO2 transport at this site. Our results suggest that nondiffusive transport may be an important mechanism influencing diel and day-to-day dynamics of soil CO2 emissions, leading to a significant mismatch (10-87% depending on the model used) between the two approaches at short time scales.

SELECTION OF CITATIONS
SEARCH DETAIL
...