Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Organometallics ; 40(9): 1195-1200, 2021 May 10.
Article in English | MEDLINE | ID: mdl-36158566

ABSTRACT

Herein we explore the intrinsic organometallic reactivity of iron embedded in a tetradentate N3C macrocyclic ligand scaffold that allows the stabilization of aryl-Fe species, which are key intermediates in Fe-catalyzed cross-coupling and C-H functionalization processes. This study covers C-H activation reactions using Me L H and FeCl2, biaryl C-C coupling product formation through reaction with Grignard reagents, and cross-coupling reactions using Me L Br or H L Br in combination with Fe0(CO)5. Synthesis under light irradiation and moderate heating (50 °C) affords the aryl-FeII complexes [FeII(Br)( Me L)(CO)] (1 Me ) and [FeII( H L)(CO)2]Br (1 H ). Exhaustive spectroscopic characterization of these rare low-spin diamagnetic species, including their crystal structures, allowed the investigation of their intrinsic reactivity.

2.
J Am Chem Soc ; 139(41): 14649-14655, 2017 10 18.
Article in English | MEDLINE | ID: mdl-28920682

ABSTRACT

Herein we describe the synthesis of a family of aryl-Co(III)-carboxylate complexes and their reactivity with ethyl diazoacetate. Crystallographic, full spectroscopic characterization, and theoretical evidence of unique C-metalated aryl-Co(III) enolate intermediates is provided, unraveling a carboxylate-assisted formation of aryl-Co(III) masked-carbenes. Moreover, additional evidence for an unprecedented Co(III)-mediated intramolecular SN2-type C-C bond formation in which the carboxylate moiety acts as a relay is disclosed. This novel strategy is key to tame the hot reactivity of a metastable Co(III)-carbene and elicit C-C coupling products in a productive manner.

3.
Chemistry ; 23(48): 11662-11668, 2017 Aug 25.
Article in English | MEDLINE | ID: mdl-28685908

ABSTRACT

Ni-mediated trifluoromethylation of an aryl-Br bond in model macrocyclic ligands (Ln -Br) has been thoroughly studied, starting with an oxidative addition at Ni0 to obtain well-defined aryl-NiII -Br complexes ([Ln -NiII ]Br). Abstraction of the halide with AgX (X=OTf- or ClO4- ) thereafter provides [Ln -NiII ](OTf). The nitrate analogue has been obtained through a direct C-H activation of an aryl-H bond using NiII salts, and this route has been studied by X-ray absorption spectroscopy (XAS). Crystallographic XRD and XAS characterization has shown a tight macrocyclic coordination in the aryl-NiII complex, which may hamper direct reaction with nucleophiles. On the contrary, enhanced reactivity is observed with oxidants, and the reaction of [Ln -NiII ](OTf) with CF3+ sources afforded Ln -CF3 products in quantitative yield. A combined experimental and theoretical mechanistic study provides new insights into the operative mechanism for this transformation. Computational analysis indicates the occurrence of an initial single electron transfer (SET) to 5-(trifluoromethyl)dibenzothiophenium triflate (TDTT), producing a transient L1 -NiIII /CF3. adduct, which rapidly recombines to form a [L1 -NiIV -CF3 ](X)2 intermediate species. A final facile reductive elimination affords L1 -CF3 . The well-defined square-planar model system studied here permits to gain fundamental knowledge on the rich redox chemistry of nickel, which is sought to facilitate the development of new Ni-based trifluoromethylation methodologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...