Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Viruses ; 14(10)2022 10 12.
Article in English | MEDLINE | ID: mdl-36298795

ABSTRACT

After fifty years of spread in the European continent, the African swine fever (ASF) virus was detected for the first time in the north of Italy (Piedmont) in a wild boar carcass in December, 2021. During the first six months of the epidemic, the central role of wild boars in disease transmission was confirmed by more than 200 outbreaks, which occurred in two different areas declared as infected. The virus entered a domestic pig farm in the second temporal cluster identified in the center of the country (Lazio). Understanding ASF dynamics in wild boars is a prerequisite for preventing the spread, and for designing and applying effective surveillance and control plans. The aim of this work was to describe and evaluate the data collected during the first six months of the ASF epidemic in Italy, and to estimate the basic reproduction number (R0) in order to quantify the extent of disease spread. The R0 estimates were significantly different for the two spatio-temporal clusters of ASF in Italy, and they identified the two infected areas based on the time necessary for the number of cases to double (td) and on an exponential decay model. These results (R0 = 1.41 in Piedmont and 1.66 in Lazio) provide quantitative knowledge on the epidemiology of ASF in Italy. These parameters could represent a fundamental tool for modeling country-specific ASF transmission and for monitoring both the spread and sampling effort needed to detect the disease early.


Subject(s)
African Swine Fever Virus , African Swine Fever , Epidemics , Animals , African Swine Fever/epidemiology , Italy/epidemiology , Sus scrofa , Swine
2.
Viruses ; 14(7)2022 06 28.
Article in English | MEDLINE | ID: mdl-35891404

ABSTRACT

African swine fever (ASF) is a devastating disease, resulting in the high mortality of domestic and wild pigs, spreading quickly around the world. Ensuring the prevention and early detection of the disease is even more crucial given the absence of licensed vaccines. As suggested by the European Commission, those countries which intend to provide evidence of freedom need to speed up passive surveillance of their wild boar populations. If this kind of surveillance is well-regulated in domestic pig farms, the country-specific activities to be put in place for wild populations need to be set based on wild boar density, hunting bags, the environment, and financial resources. Following the indications of the official EFSA opinion 2021, a practical interpretation of the strategy was implemented based on the failure probabilities of wrongly declaring the freedom of an area even if the disease is still present but undetected. This work aimed at providing a valid, applicative example of an exit strategy based on two different approaches: the first uses the wild boar density to estimate the number of carcasses need to complete the exit strategy, while the second estimates it from the number of wild boar hunted and tested. A practical free access tool, named WBC-Counter, was developed to automatically calculate the number of needed carcasses. The practical example was developed using the ASF data from Sardinia (Italian island). Sardinia is ASF endemic from 43 years, but the last ASFV detection dates back to 2019. The island is under consideration for ASF eradication declaration. The subsequent results provide a practical example for other countries in approaching the EFSA exit strategy in the best choices for its on-field application.


Subject(s)
African Swine Fever Virus , African Swine Fever , African Swine Fever/diagnosis , African Swine Fever/epidemiology , African Swine Fever/prevention & control , Animals , Farms , Italy/epidemiology , Sus scrofa , Swine
3.
Front Vet Sci ; 8: 692448, 2021.
Article in English | MEDLINE | ID: mdl-34395576

ABSTRACT

African swine fever (ASF) is a viral disease of suids that frequently leads to death. There are neither licensed vaccines nor treatments available, and even though humans are not susceptible to the disease, the serious socio-economic consequences associated with ASF have made it one of the most serious animal diseases of the last century. In this context, prevention and early detection play a key role in controlling the disease and avoiding losses in the pig value chain. Target biosecurity measures are a strong strategy against ASF virus (ASFV) incursions in farms nowadays, but to be efficient, these measures must be well-defined and easy to implement, both in commercial holdings and in the backyard sector. Furthermore, the backyard sector is of great importance in low-income settings, mainly for social and cultural practices that are highly specific to certain areas and communities. These contexts need to be addressed when authorities decide upon the provisions that should be applied in the case of infection or decide to combine them with strict preventive measures to mitigate the risk of virus spread. The need for a deeper understanding of the smallholder context is essential to prevent ASFV incursion and spread. Precise indications for pig breeding and risk estimation for ASFV introduction, spread and maintenance, taking into account the fact that these recommendations would be inapplicable in some contexts, are the keys for efficient target control measures. The aim of this work is to describe the 305 outbreaks that occurred in domestic pigs in Sardinia during the last epidemic season (2010-2018) in depth, providing essential features associated with intensive and backyard farms where the outbreaks occurred. In addition, the study estimates the average of secondary cases by kernel transmission network. Considering the current absence of ASF outbreaks in domestic pig farms in Sardinia since 2018, this work is a valid tool to specifically estimate the risk associated with different farm types and update our knowledge in this area.

4.
Animals (Basel) ; 11(3)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33802999

ABSTRACT

The need for animal welfare definition and assessment is increasing worldwide, and several studies have been conducted to help fill the knowledge gaps regarding the welfare of cattle. However, further studies are needed to provide valid synthetized measures for welfare evaluation. The aim of this study was to assess the welfare status of 16 Sardinian dairy cattle farms, based on the developed Animal Welfare and Biosecurity Evaluation checklist (AWB-EF) and the corresponding hematological, biochemical, and electrophoretic profiles of these animals. Considering the AWB-EF as gold standard, blood samples were collected from 230 Holstein breed dairy cattle, aged between 3 and 8 years, out of the periparturient period, and with no clinical signs of specific pathologies. Principal Component (PC) and correlation analyses were performed to simplify phenomena interpretation and assess positive/negative associations. Four PCs were able to explain 76% of the total variability, and six laboratory parameters were strongly associated with the AWB-EF score (Spearman's correlation coefficient ≥ 0.40, p-Value < 0.05), reflecting the real health status of the animals. Given the complexity of animal welfare as a multidimensional concept and the need to include both animal-based and non-based measures in welfare evaluation, the present work represents a sound basis for future evaluation and veterinary health planning.

5.
Vaccines (Basel) ; 8(4)2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33276509

ABSTRACT

African swine fever (ASF) remains the most serious pig infectious disease, and its persistence in domestic pigs and wild boar (WB) is a threat for the global industry. The surveillance of WB plays a central role in controlling the disease and rapidly detecting new cases. As we are close to eradicating ASF, the need to find any possible pockets of infection is even more important. In this context, passive surveillance is the method of choice for effective surveillance in WB. Considering the time and economic resources related to passive surveillance, to prioritize these activities, we developed a standardized methodology able to identify areas where WB surveillance should be focused on. Using GIS-technology, we divided a specific Sardinian infected area into 1 km2 grids (a total of 3953 grids). Variables related to WB density, ASF cases during the last three years, sex and age of animals, and the type of land were associated with each grid. Epidemiological models were used to identify the areas with both a lack of information and an high risk of hidden ASFV persistence. The results led to the creation of a graphic tool providing specific indications about areas where surveillance should be a priority.

6.
Vaccines (Basel) ; 8(3)2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32967098

ABSTRACT

African swine fever virus (ASFV), the cause of a devastating disease affecting domestic and wild pigs, has been present in Sardinia since 1978. In the framework of the regional ASF eradication plan, 4484 illegal pigs were culled between December 2017 and February 2020. The highest disease prevalence was observed in the municipality with the highest free-ranging pig density, and culling actions drastically reduced ASFV circulation among these animals. ASFV-antibody were detected in 36.7% of tested animals, which were apparently healthy, thus, the circulation of low-virulence ASFV isolates was hypothesized. ASFV genome was detected in 53 out of 2726 tested animals, and virus isolation was achieved in two distinct culling actions. Two ASFV haemadsorbing strains were isolated from antibody-positive apparently healthy pigs: 55234/18 and 103917/18. Typing analysis revealed that both isolates belong to p72 genotype I, B602L subgroup X; phylogenetic analysis based on whole genome sequencing data showed that they were closely related to Sardinian ASFV strains collected since 2010, especially 22653/Ca/2014. Our data suggested the absence of immune-escaped ASFV variants circulating among free-ranging pigs, indicating that other elements contributed to virus circulation among these animals. Understanding factors behind disease persistence in endemic settings might contribute to developing effective countermeasures against this disease.

7.
Vaccines (Basel) ; 8(3)2020 Sep 12.
Article in English | MEDLINE | ID: mdl-32932614

ABSTRACT

African swine fever (ASF) severely threatens the swine industry worldwide, given its spread and the absence of an available licensed vaccine, and has caused severe economic losses. Its persistence in wild boar (WB), longer than in domestic pig farms, and the knowledge gaps in ASF epidemiology hinder ASF virus (ASFV) eradication. Even in areas where disease is effectively controlled and ASFV is no longer detected, declaring eradication is difficult as seropositive WBs may still be detected. The aim of this work was to estimate the main ASF epidemiological parameters specific for the north of Sardinia, Italy. The estimated basic (R0) and effective (Re) reproduction numbers demonstrate that the ASF epidemic is declining and under control with an R0 of 1.139 (95% confidence interval (CI) = 1.123-1.153) and Re of 0.802 (95% CI = 0.612-0.992). In the last phases of an epidemic, these estimates are crucial tools for identifying the intensity of interventions required to definitively eradicate the disease. This approach is useful to understand if and when the detection of residual seropositive WB is no longer associated with any further ASFV circulation.

9.
Acta Parasitol ; 65(4): 999-1004, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32557083

ABSTRACT

PURPOSE: In recent decades, the incidence and distribution of tick-borne diseases have increased worldwide, attracting the attention of both clinicians and veterinarians. In Sardinia, notifiable tick-borne diseases are spreading and Mediterranean spotted fever (MSF) rickettsiosis continues to be endemic with an incidence of 10/10,000 inhabitants per year. Furthermore, ticks can transfer more than one pathogen after a single blood meal from a coinfected host or after multiple feeding on different infected hosts. The aim of this study was to update information on ticks and tick-borne diseases, focusing also on the presence of coinfection in Sardinian ticks. METHODS: The presence of protozoan (Theileria and Babesia species) and bacterial pathogens (Rickettsia spp., Anaplasma spp., Ehrlichia canis, Chlamydia spp., Bartonella spp., and Coxiella burnetii) was evaluated in 230 ticks collected from different hosts in Sardinia. RESULTS: PCR and sequencing analyses highlighted that the 59% of ticks were infected with at least one pathogen while the 15% resulted in coinfection by double and triple pathogens. Among the double co-infections, those of E. canis/C. burnetii, Babesia sp. Anglona/Ch. psittaci and Babesia sp. Anglona/C. burnetii revealed a statistically significant index of coinfection. CONCLUSION: This study identifies new pathogens in Sardinian ticks and updates the information about tick-borne diseases in the island. We also provide new results on the presence of coinfections in collected ticks. The knowledge about the diversity of ticks and tick-borne diseases circulating in Sardinia is a necessary step toward implementing effective tick-borne disease prevention and control programs.


Subject(s)
Ixodidae , Rickettsia , Tick-Borne Diseases , Ticks , Anaplasma/genetics , Animals , Rickettsia/genetics , Tick-Borne Diseases/epidemiology
10.
Front Public Health ; 8: 153, 2020.
Article in English | MEDLINE | ID: mdl-32391308

ABSTRACT

December 2019 saw a novel coronavirus (COVID-19) from China quickly spread globally. Currently, COVID-19, defined as the new pandemic by the World Health Organization (WHO), has reached over 750,000 confirmed cases worldwide. The virus began to spread in Italy from the 22nd February, and the number of related cases is still increasing. Furthermore, given that a relevant proportion of infected people need hospitalization in Intensive Care Units, this may be a crucial issue for National Healthcare System's capacity. WHO underlines the importance of specific disease regional estimates. Because of this, Italy aimed to put in place proportioned and controlled measures, and to guarantee adequate funding to both increase the number of ICU beds and increase production of personal protective equipment. Our aim is to investigate the current COVID-19 epidemiological context in Sardinia region (Italy) and to estimate the transmission parameters using a stochastic model to establish the number of infected, recovered, and deceased people expected. Based on available data from official Italian and regional sources, we describe the distribution of infected cases during the period between 2nd and 15th March 2020. To better reflect the actual spread of COVID-19 in Sardinia based on data from 15th March (first Sardinian declared outbreak), two Susceptible-Infectious-Recovered-Dead (SIRD) models have been developed, describing the best and worst scenarios. We believe that our findings represent a valid contribution to better understand the epidemiological context of COVID-19 in Sardinia. Our analysis can help health authorities and policymakers to address the right interventions to deal with the rapidly expanding health emergency.


Subject(s)
COVID-19/epidemiology , Hospital Bed Capacity/statistics & numerical data , Intensive Care Units/trends , Models, Statistical , Adult , Humans , Intensive Care Units/economics , Intensive Care Units/statistics & numerical data , Italy/epidemiology , Middle Aged , Personal Protective Equipment/economics , SARS-CoV-2/isolation & purification
11.
J Vet Sci ; 21(2): e14, 2020 03.
Article in English | MEDLINE | ID: mdl-31940693

ABSTRACT

African swine fever (ASF) is a highly contagious disease of domestic pigs and wild boars (WBs). Without a vaccine, early antibody and antigen detection and rapid diagnosis are crucial for the effective prevention of the disease and the employment of control measures. In Sardinia, where 3 different suid populations coexisted closely for a long time, the disease persists since 1978. The recent ASF eradication plan involves more stringent measures to combat free-ranging pigs and any kind of illegality in the pig industry. However, critical issues such as the low level of hunter cooperation with veterinary services and the time required for ASF detection in the WBs killed during the hunting season still remain. Considering the need to deliver true ASF negative carcasses as early as possible, this study focuses on the evaluation and validation of a duplex pen-side test that simultaneously detects antibodies and antigens specific to ASF virus, to improve molecular diagnosis under field conditions. The main goal was to establish the specificity of the two pen-side tests performed simultaneously and to determine their ability to detect the true ASF negative carcasses among the hunted WBs. Blood and organ samples of the WBs hunted during the 2018/2019 hunting seasons were obtained. A total of 160 animals were tested using the pen-side kit test; samples were collected for virological and serological analyses. A specificity of 98% was observed considering the official laboratory tests as gold standards. The new diagnostic techniques could facilitate faster and cost-effective control of the disease.


Subject(s)
African Swine Fever Virus/isolation & purification , African Swine Fever/diagnosis , Cost-Benefit Analysis , Diagnostic Tests, Routine/veterinary , Animals , Diagnostic Tests, Routine/economics , Italy , Swine
12.
Front Vet Sci ; 6: 299, 2019.
Article in English | MEDLINE | ID: mdl-31572734

ABSTRACT

From more than 40 years African swine fever (ASF) is endemic in Sardinia. Historically, areas at higher risk are located throughout some inland parts of this island where domestic pigs are still illegally kept in semi-wild conditions, living in contact with the local wild boar population, thereby creating perfect conditions for disease endemicity. A new eradication plan (EP-ASF15-18) has been ongoing for the past 3 years, based on a comprehensive strategy adapted to the local situation and focused on strong actions on domestic pig farms, wild boars (WB), and the third Sardinian typical involved population [illegal free-ranging pigs (FRPs)]. A fundamental aspect of the plan is the classification of pig farms as "controlled" or "certified," based on clinical, structural, and biosecurity characteristics. The eradication plan also provides for strong action against illegal farms and pig meat marketing channels. In addition, this plan establishes specific control measures for WB hunting and ASF checks. Each control strategy is specifically based on municipality risk level, to focus actions and resources on areas at higher risk of endemic or re-emerging ASF. Thus, precise risk classification is fundamental to this goal. The aim of the present work was to establish an ASF risk index, to provide a summary measure of the risk level in the Sardinian municipalities. This synthetic measure can express the different aspects of a multidimensional phenomenon with a single numerical value, facilitating territorial and temporal comparisons. To this end, retrospective data (years 2011-2018) were used. The ASF risk index is the result of the algorithmic combination of numerical elementary indicators: disease prevalence in the suid populations, WB compliance with EP-ASF15-18, domestic pig compliance with EP-ASF15-18, and presence of FRPs. A negative binomial regression model has been applied and predictors calculated to obtain a risk index for each municipality. The result of the risk analysis was discussed and considered according to expert opinion and consensus. The results of this study, expressed as risk score and classified into five risk levels, can be used to help define actions to be carried out in each Sardinian municipality, according to the risk assessment for the territory.

13.
PLoS One ; 14(8): e0220945, 2019.
Article in English | MEDLINE | ID: mdl-31381585

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0217367.].

14.
PLoS One ; 14(6): e0217367, 2019.
Article in English | MEDLINE | ID: mdl-31158242

ABSTRACT

The need to consider the role of social factors in the efficacy of farm management and, consequently, in the onset and persistence of diseases typical to animal farms is increasingly being realized increasingly worldwide. Many risk analysis studies have been conducted to assess the role of various factors in the development of animal diseases; however, very few have accounted for the role of social factors. The aim of this work was to bridge this gap, with the main hypothesis that different socio-economic factors could be valid indicators for the occurrence of different animal diseases. A socio-economic analysis was performed using demographic characteristics of the farmers and data from 44 social indicators released by the Italian Statistician National Institute of Statistics (ISTAT) database. African swine fever (ASF) in wild boars (WB) and domestic pigs and other endemic animal diseases and zoonoses in Sardinia were considered, such as cistic echinococcosis (CE), contagious agalactia (CA), trichinellosis, West Nile disease (WND), and bluetongue (BT). Seven different negative binomial regression models were fitted using the number of cases between 2011-2017. Three indicators-cultural demand, employment rate, and legality-showed a statistically significant association with risk for all the diseases considered, but with varying effects. Some indicators, such as the age and sex of the farmer, material deprivation index, number of farms and animals, micro-criminality index, and rate of reported thefts were common to ASF, CA, trichinellosis, and CE cases. Others such as the forest surface and the energy produced from renewable sources were common to BT, WND, and ASF in WB. Tourism in seasons other than summer was a valid predictor of ASF and trichinellosis, while out-of-region hospital use had a statistically significant role in CE risk identification. These results may help understand the social context in which these diseases may occur and thus guide the design and implementation of additional risk management measures that go beyond well-known veterinary measures.


Subject(s)
Animal Husbandry , Databases, Factual , Models, Biological , Swine Diseases/epidemiology , Swine , Animals , Italy/epidemiology , Socioeconomic Factors
15.
PLoS One ; 14(4): e0214224, 2019.
Article in English | MEDLINE | ID: mdl-30934010

ABSTRACT

Cystic echinococcosis (CE) is a complex zoonosis with domestic and sylvatic life-cycles, involving different intermediate and definitive host species. Many previous studies have highlighted the lack of a surveillance system for CE, its persistence in Italy, and endemicity in several Italian regions. Because of the absence of a uniform surveillance program for both humans and animals, disease occurrence is widely underestimated. This study aimed to estimate the prevalence of ovine CE in Italy. Survey data on the prevalence of Echinococcus granulosus complex infections in Italian sheep farms from 2010 to 2015 were obtained in collaboration with Regional Veterinary Epidemiology Observatories (OEVRs). Bayesian analysis was performed to estimate the true CE farm prevalence. The prior true CE prevalence was estimated using data from Sardinia. Second, Bayesian modelling of the observed prevalence in different regions and the true prevalence estimation from the first step were used to ultimately estimate the prevalence of ovine CE in Italy. We obtained survey data from 10 OEVRs, covering 14 Italian regions. We observed that the risk of CE infection decreased over the years, and it was strictly correlated with the density of susceptible species. Using Sardinia as prior distribution, where the disease farm prevalence was approximately 19% (95% CI, 18.82-20.02), we estimated that the highest endemic CE farm prevalence was in Basilicata with a value of 12% (95% BCI: 7.49-18.9%) and in Piemonte 7.64%(95% BCI: 4.12-13.04%). Our results provide spatially relevant data crucial for guiding CE control in Italy. Precise information on disease occurrence location would aid in the identification of priority areas for disease control implementation by the authorities. The current underestimation of CE occurrence should urge the Italian and European governments to become aware of the public health importance of CE and implement targeted interventions for high-risk areas.


Subject(s)
Abattoirs , Data Analysis , Echinococcosis/epidemiology , Echinococcosis/veterinary , Sheep Diseases/epidemiology , Sheep/parasitology , Animals , Bayes Theorem , Echinococcus granulosus/growth & development , Geography , Italy/epidemiology , Life Cycle Stages , Prevalence , Regression Analysis , Retrospective Studies , Software
16.
Transbound Emerg Dis ; 66(3): 1114-1119, 2019 May.
Article in English | MEDLINE | ID: mdl-30715791

ABSTRACT

African swine fever (ASF) is a notifiable infectious disease, caused by the ASF virus (ASFV), which is a DNA virus belonging to the family Asfarviridae, genus Asfivirus. This disease has gained importance in the last decade after its spread in several countries in Eastern and Central Europe, and more recently, in China. Despite the efforts made to eradicate it, ASF is still present on the Mediterranean island of Sardinia (Italy) and has been since 1978. ASF risk factors on the island have been analysed in previous studies; the role of free-ranging pigs in virus persistence has been suggested, but has not been fully elucidated. The most recent eradication plan provides more stringent measures to combat free-ranging pigs and any kind of illegality in the pig sector. From December 2017 to June 2018, a total of 29 depopulation actions were performed in 13 municipalities in central Sardinia, during which 2,281 free-ranging pigs were culled and more than 50% of them were tested for ASFV and antibody presence (1,218 and 1,416, respectively). A total of 651 pigs were seropositive, with a mean seroprevalence of 53.4% (CI 95% = 50.6-56.3), and 38 were ASFV positive (virus prevalence = 2.6%; CI 95% = 2.1-3.0). To the best of our knowledge, the present study is the first to provide a complete evaluation of this millennial system of pig farming and ASFV prevalence in free-ranging pigs. Furthermore, it has emphasised the necessity of combining the maintenance of an epidemiological surveillance program with continuous education of farmers and other people involved in pig husbandry, based on cultural and economic aspects.


Subject(s)
African Swine Fever Virus/immunology , African Swine Fever/epidemiology , Disease Eradication , African Swine Fever/prevention & control , African Swine Fever/virology , African Swine Fever Virus/genetics , African Swine Fever Virus/isolation & purification , Animal Culling , Animals , Epidemiological Monitoring , Farms , Female , Geography , Italy/epidemiology , Male , Prevalence , Risk Factors , Seroepidemiologic Studies , Swine
17.
Prev Vet Med ; 155: 75-85, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29786527

ABSTRACT

Bluetongue (BT) is a vector-borne disease transmitted by species of Culicoides midges (Diptera: Ceratopogonidae). Many studies have contributed to clarifying various aspects of its aetiology, epidemiology and vector dynamic; however, BT remains a disease of epidemiological and economic importance that affects ruminants worldwide. Since 2000, the Sardinia region has been the most affected area of the Mediterranean basin. The region is characterised by wide pastoral areas for sheep and represents the most likely candidate region for the study of Bluetongue virus (BTV) distribution and prevalence in Italy. Furthermore, specific information on the farm level and epidemiological studies needs to be provided to increase the knowledge on the disease's spread and to provide valid mitigation strategies in Sardinia. This study conducted a punctual investigation into the spatial patterns of BTV transmission to define a risk profile for all Sardinian farmsby using a logistic multilevel mixed model that take into account agro-meteorological aspects, as well as farm characteristics and management. Data about animal density (i.e. sheep, goats and cattle), vaccination, previous outbreaks, altitude, land use, rainfall, evapotranspiration, water surface, and farm management practices (i.e. use of repellents, treatment against insect vectors, storage of animals in shelter overnight, cleaning, presence of mud and manure) were collected for 12,277 farms for the years 2011-2015. The logistic multilevel mixed model showed the fundamental role of climatic factors in disease development and the protective role of good management, vaccination, outbreak in the previous year and altitude. Regional BTV risk maps were developed, based on the predictor values of logistic model results, and updated every 10 days. These maps were used to identify, 20 days in advance, the areas at highest risk. The risk farm profile, as defined by the model, would provide specific information about the role of each factor for all Sardinian institutions involved in devising BT prevention and control strategies.


Subject(s)
Animal Husbandry/methods , Bluetongue/prevention & control , Ceratopogonidae/virology , Insect Vectors/virology , Animals , Bluetongue/epidemiology , Bluetongue/transmission , Bluetongue virus , Cattle , Disease Outbreaks , Farms , Italy , Livestock/virology , Retrospective Studies , Sheep
18.
Prev Vet Med ; 152: 1-11, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29559099

ABSTRACT

Despite the implementation of several eradication programmes, African swine fever (ASF), a viral disease in pigs caused by a DNA virus (ASFV), has been present in Sardinia (Italy) since 1978. Several studies have been carried out on the epidemiology of ASF in Sardinia, aimed at attaining a better understanding of the role of the risk factors related to ASFV persistence, but those studies did not address the social aspects involved. This work sought to bridge this gap, identifying the main social risk factors associated with ASF persistence. With this aim, this study takes into account not only the known "biological" risk factors identified in previous studies, but also the direct correlation between ASF persistence and well-known socio-economic aspects. The demographic characteristics, the Material Deprivation Index (IDM) and the non-compliance with the rules on ASF controls, including the traditional method of keeping free-range pigs has been evaluated. To assess the weight of each risk factor, data about pig farms, wild boar and social factors in Sardinia, were analysed using the Negative Binomial Regression Model. The main outcome was the number of domestic pig outbreaks occurring in Sardinian during 2011-2016. The effect in terms of the odds ratio (OR) was calculated to each factor included. The biological risk factors identified covered the number of animals (OR = 3.33, p < .0001, by 100 animals) and farms (OR = 1.07, p = .006, by 10 farms), the animal movements (OR = 1.64, p = .001, by 10 movements), the presence of illegal pigs (OR = 6.87, p < .0001) and the ASFV prevalence in wild boars (OR = 1.30, p = .001). Among the socio-economic factors, the compliance with control measures (OR = 0.90, p < .0001), the human population increasing by 1000 people (OR = 0.89, p < .0001), the growing age of the farmers (OR = 0.66, p = .025, by 5 years) and non-relationships with other farms (OR = 0.85, p < .001), decreased the ASF risk. The deprived condition (i.e. cultural and material deprivation, lack of resources and overcrowding index) increases the risk of about four times, as the low educational level (OR = 3.97, p = .002). Having highlighted the important role of social conditions, this risk definition allows understanding the Sardinian situation and may be useful to decision-makers to draft specific control strategies against this disease in the island, which should take into account local risk factors.


Subject(s)
African Swine Fever/epidemiology , Animal Husbandry/methods , Disease Outbreaks/veterinary , Farms , Animals , Italy/epidemiology , Models, Theoretical , Prevalence , Regression Analysis , Risk Assessment , Risk Factors , Socioeconomic Factors , Swine
19.
PLoS Negl Trop Dis ; 11(7): e0005771, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28746395

ABSTRACT

BACKGROUND: Cystic echinococcosis (CE) is an important neglected zoonotic parasitic infection belonging to the subgroup of seven Neglected Zoonotic Disease (NZDs) included in the World Health Organization's official list of 18 Neglected Tropical Diseases (NTDs). CE causes serious global human health concerns and leads to significant economic losses arising from the costs of medical treatment, morbidity, life impairments and fatality rates in human cases. Moreover, CE is endemic in several Italian Regions. The aim of this study is to perform a detailed analysis of the economic burden of hospitalization and treatment costs and to estimate the Disability Adjusted Life Years (DALYs) of CE in Italy. METHODS AND FINDINGS: In the period from 2001 to 2014, the direct costs of 21,050 Hospital Discharge Records (HDRs) belonging to 12,619 patients with at least one CE-related diagnosis codes were analyzed in order to quantify the economic burden of CE. CE cases average per annum are 901 (min-max = 480-1,583). Direct costs include expenses for hospitalizations, medical and surgical treatment incurred by public and private hospitals and were computed on an individual basis according to Italian Health Ministry legislation. Moreover, we estimated the DALYs for each patient. The Italian financial burden of CE is around € 53 million; the national average economic burden per annum is around € 4 million; the DALYs of the population from 2001 to 2014 are 223.35 annually and 5.26 DALYs per 105 inhabitants. CONCLUSION: In Italy, human CE is responsible for significant economic losses in the public health sector. In humans, costs associated with CE have been shown to have a great impact on affected individuals, their families and the community as a whole. This study could be used as a tool to prioritize and make decisions with regard to a surveillance system for this largely preventable yet neglected disease. It demonstrates the need of implementing a CE control program aimed at preventing the considerable economic and social losses it causes in high incidence areas.


Subject(s)
Cost of Illness , Echinococcosis/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Echinococcosis/therapy , Epidemiologic Studies , Female , Health Care Costs , Hospitalization/economics , Humans , Italy/epidemiology , Male , Middle Aged , Neglected Diseases/epidemiology , Retrospective Studies , Young Adult
20.
J Wildl Dis ; 53(3): 602-606, 2017 07.
Article in English | MEDLINE | ID: mdl-28231033

ABSTRACT

African swine fever (ASF) is one of the most important and complex infectious diseases affecting pigs ( Sus scrofa ). The disease has been present in Sardinia, Italy, since 1978. Factors influencing the presence of the disease on the island are the presence of illegally bred pigs, uncontrolled movements of animals, and local traditions. Implementation of public health programs is essential for controlling ASF. The use of new diagnostic techniques on both wild boar (WB) and illegally bred pigs would provide tools for faster and more inexpensive control of the disease. We evaluated a commercial serological test kit (Pen-side [PS]) for use in the field. We sampled 113 hunter-harvested WB during the 2014-15 season, collecting blood and lung samples to conduct serological analyses and to screen for the ASF virus. Although the sensitivity (81.8%) and specificity (95.9%) of tests performed in the field were reduced compared to the same test in laboratory, they nevertheless allowed for rapid diagnosis and reduced unnecessary carcass destruction. The test, conducted in the field, was less expensive than in the laboratory and required less manpower. Therefore, we conclude that the combined use of antibody PS test and antigen PS test may be a valuable emergency management method during an outbreak as well as a useful tool for conducting regular monitoring activities as a preventive policy.


Subject(s)
African Swine Fever Virus/isolation & purification , African Swine Fever/diagnosis , Animals , Disease Outbreaks , Immunoassay/veterinary , Italy , Sus scrofa/virology , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...