Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Neurosci ; 22(3): 421-435, 2019 03.
Article in English | MEDLINE | ID: mdl-30664769

ABSTRACT

The clearance of damaged myelin sheaths is critical to ensure functional recovery from neural injury. Here we show a previously unidentified role for microvessels and their lining endothelial cells in engulfing myelin debris in spinal cord injury (SCI) and experimental autoimmune encephalomyelitis (EAE). We demonstrate that IgG opsonization of myelin debris is required for its effective engulfment by endothelial cells and that the autophagy-lysosome pathway is crucial for degradation of engulfed myelin debris. We further show that endothelial cells exert critical functions beyond myelin clearance to promote progression of demyelination disorders by regulating macrophage infiltration, pathologic angiogenesis and fibrosis in both SCI and EAE. Unexpectedly, myelin debris engulfment induces endothelial-to-mesenchymal transition, a process that confers upon endothelial cells the ability to stimulate the endothelial-derived production of fibrotic components. Overall, our study demonstrates that the processing of myelin debris through the autophagy-lysosome pathway promotes inflammation and angiogenesis and may contribute to fibrotic scar formation.


Subject(s)
Autophagy , Endothelial Cells/physiology , Macrophages/physiology , Microvessels/physiology , Myelin Sheath/physiology , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Angiogenesis Inducing Agents , Animals , Cell Proliferation , Encephalomyelitis, Autoimmune, Experimental/complications , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Fibrosis , Inflammation/etiology , Inflammation/physiopathology , Lysosomes/physiology , Macrophages/pathology , Mice, Inbred C57BL , Microvessels/pathology , Myelin Sheath/pathology , Spinal Cord Injuries/complications , Transcriptome
2.
J Vis Exp ; (130)2017 12 30.
Article in English | MEDLINE | ID: mdl-29364206

ABSTRACT

Bone marrow-derived macrophages (BMDMs) are mature leukocytes that serve a critical physiological role as professional phagocytes capable of clearing a variety of particles. Normally, BMDMs are restricted from the central nervous system (CNS), but following an injury, they can readily infiltrate. Once within the injured CNS tissue, BMDMs are the primary cell type responsible for the clearance of injury-derived cellular debris, including large quantities of lipid rich myelin debris. The neuropathological ramifications of BMDM infiltration and myelin debris phagocytosis within the CNS are complex and not well understood. The protocols described here, allow for the direct in vitro study of BMDMs in the context of CNS injury. We cover murine BMDM isolation and culture, myelin debris preparation, and assays to assess BMDM myelin debris phagocytosis. These techniques produce robust quantifiable results without the need for significant specialized equipment or materials, yet can be easily customized to meet the needs of researchers.


Subject(s)
Macrophages/physiology , Myelin Sheath/physiology , Phagocytosis/physiology , Animals , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Mice , Myelin Sheath/immunology , Myelin Sheath/metabolism
3.
Cell Biosci ; 6: 42, 2016.
Article in English | MEDLINE | ID: mdl-27293547

ABSTRACT

BACKGROUND: The single-stranded RNA Flavivirus, Zika virus (ZIKV), has recently re-emerged and spread rapidly across the western hemisphere's equatorial countries, primarily through Aedes mosquito transmission. While symptoms in adult infections appear to be self-limiting and mild, severe birth defects, such as microcephaly, have been linked to infection during early pregnancy. Recently, Tang et al. (Cell Stem Cell 2016, doi: 10.1016/j.stem.2016.02.016) demonstrated that ZIKV efficiently infects induced pluripotent stem cell (iPSC) derived human neural progenitor cells (hNPCs), resulting in cell cycle abnormalities and apoptosis. Consequently, hNPCs are a suggested ZIKV target. METHODS: We analyzed the transcriptomic sequencing (RNA-seq) data (GEO: GSE78711) of ZIKV (Strain: MR766) infected hNPCs. For comparison to the ZIKV-infected hNPCs, the expression data from hNPCs infected with human cytomegalovirus (CMV) (Strain: AD169) was used (GEO: GSE35295). Utilizing a combination of Gene Ontology, database of human diseases, and pathway analysis, we generated a putative systemic model of infection supported by known molecular pathways of other highly related viruses. RESULTS: We analyzed RNA-sequencing data for transcript expression alterations in ZIKV-infected hNPCs, and then compared them to expression patterns of iPSC-derived hNPCs infected with CMV, a virus that can also induce severe congenital neurological defects in developing fetuses. We demonstrate for the first time that many of cellular pathways correlate with clinical pathologies following ZIKV infection such as microcephaly, congenital nervous system disorders and epilepsy. Furthermore, ZIKV activates several inflammatory signals within infected hNPCs that are implicated in innate and acquired immune responses, while CMV-infected hNPCs showed limited representation of these pathways. Moreover, several genes related to pathogen responses are significantly upregulated upon ZIKV infection, but not perturbed in CMV-infected hNPCs. CONCLUSION: The presented study is the first to report enrichment of numerous pro-inflammatory pathways in ZIKV-infected hNPCs, indicating that hNPCs are capable of signaling through canonical pro-inflammatory pathways following viral infection. By defining gene expression profiles, new factors in the pathogenesis of ZIKV were identified which could help develop new therapeutic strategies.

4.
Mol Brain ; 9(1): 48, 2016 05 06.
Article in English | MEDLINE | ID: mdl-27153974

ABSTRACT

BACKGROUND: Macrophages play an important role in the inflammatory responses involved with spinal cord injury (SCI). We have previously demonstrated that infiltrated bone marrow-derived macrophages (BMDMs) engulf myelin debris, forming myelin-laden macrophages (mye-Mϕ). These mye-Mϕ promote disease progression through their pro-inflammatory phenotype, enhanced neurotoxicity, and impaired phagocytic capacity for apoptotic cells. We thus hypothesize that the excessive accumulation of mye-Mϕ is the root of secondary injury, and that targeting mye-Mϕ represents an efficient strategy to improve the local inflammatory microenvironment in injured spinal cords and to further motor neuron function recovery. In this study, we administer murine embryonic stem cell conditioned media (ESC-M) as a cell-free stem cell based therapy to treat a mouse model of SCI. RESULTS: We showed that BMDMs, but not microglial cells, engulf myelin debris generated at the injury site. Phagocytosis of myelin debris leads to the formation of mye-Mϕ in the injured spinal cord, which are surrounded by activated microglia cells. These mye-Mϕ are pro-inflammatory and lose the normal macrophage phagocytic capacity for apoptotic cells. We therefore focus on how to trigger lipid efflux from mye-Mϕ and thus restore their function. Using ESC-M as an immune modulating treatment for inflammatory damage after SCI, we rescued mye-Mϕ function and improved functional locomotor recovery. ESC-M treatment on mye-Mϕ resulted in improved exocytosis of internalized lipids and a normal capacity for apoptotic cell phagocytosis. Furthermore, when ESC-M was administered intraperitoneally after SCI, animals exhibited significant improvements in locomotor recovery. Examination of spinal cords of the ESC-M treated mice revealed similar improvements in macrophage function as well as a shift towards a more anti-inflammatory environment at the lesion and parenchyma. CONCLUSIONS: The embryonic stem cell conditioned media can be used as an effective treatment for SCI to resolve inflammation and improve functional recovery while circumventing the complications involved in whole cell transplantation.


Subject(s)
Culture Media, Conditioned/pharmacology , Macrophages/pathology , Mouse Embryonic Stem Cells/metabolism , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/therapy , Animals , Apoptosis/drug effects , Bone Marrow Cells/metabolism , Foam Cells/drug effects , Foam Cells/metabolism , Inflammation/complications , Inflammation/pathology , Lipids/chemistry , Macrophage Activation/drug effects , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Myelin Sheath/metabolism , Neutrophils/drug effects , Neutrophils/metabolism , Phagocytosis/drug effects , Recovery of Function/drug effects , Spinal Cord Injuries/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...