Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; : 107509, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944126

ABSTRACT

Shy (side chain hydratase) and Sal (side chain aldolase), are involved in successive reactions in the pathway of bile acid side chain catabolism in Proteobacteria. Untagged Shy co-purified with His-tagged Sal indicating that the two enzymes form a complex. Shy contains a MaoC and a DUF35 domain. When co-expressed with Sal, the DUF35 domain but not the MaoC domain of Shy was observed to co-purify with Sal, indicating Sal interacts with Shy through its DUF35 domain. The MaoC domain of Shy (ShyMaoC) remained catalytically viable and could hydrate cholyl-enoyl-CoA with similar catalytic efficiency as in the Shy-Sal complex. Sal expressed with the DUF35 domain of Shy (Sal-ShyDUF35) was similarly competent for the retroaldol cleavage of cholyl-3-OH-CoA. ShyMaoC showed a preference for C5 side chain bile acid substrates, exhibiting low activity towards C3 side chain substrates. The ShyMaoC structure was determined by X-ray crystallography, showing a hot dog fold with a short central helix surrounded by a twisted anti-parallel ß-sheet. Modeling and mutagenesis studies suggest that the bile acid substrate occupies the large open cleft formed by the truncated central helix and repositioning of the active site housing. ShyMaoC therefore contains two substrate binding sites per homodimer, making it distinct from previously characterized MaoC steroid hydratases that are (pseudo)-heterodimers with one substrate binding site per dimer. The characterization of Shy provides insight into how MaoC family hydratases have adapted to accommodate large polycyclic substrates that can facilitate future engineering of these enzymes to produce novel steroid pharmaceuticals.

2.
J Bacteriol ; 204(9): e0023622, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36000836

ABSTRACT

Actinobacterial MaoC family enoyl coenzyme A (CoA) hydratases catalyze the addition of water across the double bond of CoA esters during steroid side chain catabolism. We determined that heteromeric MaoC type hydratases, exemplified by ChsH1-ChsH2Mtb of Mycobacterium tuberculosis and CasM-CasORjost from Rhodococcus jostii RHA1, are specific toward a 3-carbon side chain steroid metabolite, consistent with their roles in the last ß-oxidation cycle of steroid side chain degradation. Hydratases containing two fused MaoC domains are responsible for the degradation of longer steroid side chains. These hydratases, encoded in the cholesterol degradation gene clusters of M. tuberculosis and R. jostii RHA1, have broad specificity and were able to catalyze the hydration of the 5-carbon side chain of both cholesterol and bile acid metabolites. Surprisingly, the homologous hydratases from the bile acid degradation pathway have low catalytic efficiencies or no activity toward the 5-carbon side chain bile acid metabolites, cholyl-enoyl-CoA, lithocholyl-enoyl-CoA, and chenodeoxycholyl-enoyl-CoA. Instead, these hydratases preferred a cholate metabolite with oxidized steroid rings and a planar ring structure. Together, the results suggest that ring oxidation occurs prior to side chain degradation in the actinobacterial bile acid degradation pathway. IMPORTANCE Characterization of the substrate specificity of hydratases described here will facilitate the development of specific inhibitors that may be useful as novel therapeutics against M. tuberculosis and to metabolically engineer bacteria to produce steroid pharmaceuticals with desired steroid rings and side chain structures.


Subject(s)
Hydrolases , Mycobacterium tuberculosis , Carbon/metabolism , Cholates/metabolism , Cholesterol/metabolism , Hydrolases/metabolism , Mycobacterium tuberculosis/enzymology , Steroids/chemistry , Steroids/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...