Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
PLoS One ; 14(12): e0225769, 2019.
Article in English | MEDLINE | ID: mdl-31794590

ABSTRACT

Optical coherence tomography angiography (OCT-A) represents the most recent modality in retinal imaging for non-invasive and depth-selective visualization of blood flow in retinal vessels. With regard to quantitative OCTA measurements for early detection of subclinical alterations, it is of great interest, which intra- and extra-ocular factors affect the results of OCTA measurements. Here, we performed OCTA imaging of the central retina in 65 eyes of 65 young healthy female and male participants and evaluated individual physical fitness levels by standard lactate diagnostic using an incremental maximal performance running test. The main finding was that OCTA measurements of the foveal avascular zone (FAZ) area were associated with physical fitness. Using multivariate regression analysis, we found that running speed at the individual lactate threshold, a marker strongly associated with aerobic performance capacity, significantly contributed to differences in FAZ area (ß = 0.111, p = 0.032). The data indicates that smaller FAZ areas are likely observed in individuals with higher aerobic exercise capacity. Our findings are also of interest with respect to the potential use of retinal OCTA imaging to detect exercise-induced microvascular adaptations in future studies.


Subject(s)
Correlation of Data , Fluorescein Angiography , Health , Microvessels/diagnostic imaging , Physical Fitness/physiology , Retinal Vessels/diagnostic imaging , Tomography, Optical Coherence , Adult , Anaerobiosis , Female , Humans , Lactates/metabolism , Male , Multivariate Analysis , Regression Analysis , Young Adult
2.
Oncotarget ; 10(38): 3625-3640, 2019 Jun 04.
Article in English | MEDLINE | ID: mdl-31217898

ABSTRACT

Circulatory microRNAs (c-miRNAs) are regulated in response to physical activity and may exert anti-atherosclerotic effects. Since the vascular endothelium is an abundant source of c-miRNAs, we aimed to identify novel vasculoprotective exercise-induced c-miRNAs by the combined analysis of published endothelial miRNA array data followed by in vivo and in vitro validation. We identified 8 different array-based publications reporting 185 endothelial shear stress-regulated miRNAs of which 13 were identified in ≥3 independent reports. Nine miRNAs had already been associated with physical activity. Of the remaining novel miRNAs, miR-98-3p and miR-125-5p were selected for further analysis due to reported vasculoprotective effects. Analysis in two different 4-week high-intensity interval training (HIIT) groups (group 1 [n=27]: 4x30 s, group 2 [n=25]: 8x15 s; all-out running) suggested significantly elevated miR-98 and miR-125a-5p levels in response to acute exercise at baseline and at follow-up. Endothelial in vitro shear stress experiments revealed increased miR-125a-5p and miR-98-3p levels in medium of human umbilical vein endothelial cells at 30 dyn/cm2 after 20 and 60 min, respectively. Our results suggest that miR-98-3p and miR-125a-5p can be rapidly secreted by endothelial cells, which might be the source of increased c-miR-98-3p and -125a-5p levels in response to HIIT. Both miRNAs attenuate endothelial inflammation and may mediate vasculoprotective effects of physical exercise including HIIT.

3.
Front Physiol ; 9: 395, 2018.
Article in English | MEDLINE | ID: mdl-29719514

ABSTRACT

Aim: MicroRNA-222 (miR-222) and miR-29c have been identified as important modulators of cardiac growth and may protect against pathological cardiac remodeling. miR-222 and -29c may thus serve as functional biomarkers for exercise-induced cardiac adaptations. This investigation compared the effect of two workload-matched high-intensity interval training (HIIT) protocols with different recovery periods on miR-222 and -29c levels. Methods: Sixty-three moderately trained females and males (22.0 ± 1.7 years) fulfilled the eligibility criteria and were randomized into two HIIT groups using sex and exercise capacity. During a controlled 4-week intervention (two sessions/week) a 4 × 30 HIIT group performed 4 × 30 s runs (all-out, 30 s active recovery) and a 8 × 15 HIIT group performed 8 × 15 s runs (all-out, 15 s active recovery). miR-222 and -29c as well as transforming growth factor-beta1 (TGF-beta1) mRNA levels were determined during high-intensity running as well as aerobic exercise using capillary blood from earlobes. Performance parameters were assessed using an incremental continuous running test (ICRT) protocol with blood lactate diagnostic and heart rate (HR) monitoring to determine HR recovery and power output at individual anaerobic threshold (IAT). Results: At baseline, acute exercise miR-222 and -29c levels were increased only in the 4 × 30 HIIT group (both p < 0.01, pre- vs. post-exercise). After the intervention, acute exercise miR-222 levels were still increased in the 4 × 30 HIIT group (p < 0.01, pre- vs. post-exercise) while in the 8 × 15 HIIT group again no acute effect was observed. However, both HIIT interventions resulted in elevated resting miR-222 and -29c levels (all p < 0.001, pre- vs. post-intervention). Neither of the two miRNAs were elevated at any ICRT speed level at baseline nor follow-up. While HR recovery was improved by >24% in both HIIT groups (both p ≤ 0.0002) speed at IAT was improved by 3.6% only in the 4 × 30 HIIT group (p < 0.0132). Correlation analysis suggested an association between both miRNAs and TGF-beta1 mRNA (all p ≤ 0.006, r ≥ 0.74) as well as change in speed at IAT and change in miR-222 levels (p = 0.024, r = 0.46). Conclusions: HIIT can induce increased circulating levels of cardiac growth-associated miR-222 and -29c. miR-222 and miR-29c could be useful markers to monitor HIIT response in general and to identify optimal work/rest combinations.

4.
Atherosclerosis ; 274: 8-15, 2018 07.
Article in English | MEDLINE | ID: mdl-29747089

ABSTRACT

BACKGROUND AND AIMS: High-intensity interval training (HIIT) has been identified to be efficient for increasing health-related fitness in general and in lifestyle-induced chronic diseases such as hypertension, obesity and metabolic syndrome. This study aimed to evaluate HIIT effects on optic nerve head (ONH) and macular perfusion in healthy adults using optical coherence tomography angiography (OCTA). METHODS: Fifty-eight healthy participants (22.0 ±â€¯2.02 years, 40 females (69.0%)) performed a 4-week HIIT with two exercise sessions/week: Group 1, 4 × 30 HIIT, running at maximal speed (all-out) for 4 × 30 s with 30 s active recovery, Group 2, 8 × 15 HIIT, running at maximal speed (all-out) for 8 × 15 s with 15 s active recovery. OCTA of the ONH and the macula was performed at baseline and follow-up to detect changes of the foveal avascular zone (FAZ). Flow density was evaluated in the superficial and deep plexus of the central macula, in the radial peripapillary capillary layer, the nerve head layer of the disc region and of the peripapillary region. RESULTS: The mean deep FAZ area and flow density of the superficial layer decreased by 14.00 ±â€¯13.02% and 1.26 ±â€¯3.20%, respectively, in response to overall HIIT (pre vs. post p <0.0001; p = 0.0041). The flow density of the nerve head layer in the peripapillary area showed an overall increase by 1.94 ±â€¯2.39% (pre vs post p < 0.0001). All other parameters showed no difference. CONCLUSIONS: HIIT may be performed to induce changes in ophthalmic measures such as FAZ and nerve head perfusion. OCTA imaging of the central retina and the ONH could represent a sensitive tool for the early detection of systemic vascular changes.


Subject(s)
High-Intensity Interval Training , Macula Lutea/blood supply , Optic Disk/blood supply , Perfusion Imaging/methods , Retinal Vessels/diagnostic imaging , Tomography, Optical Coherence , Blood Flow Velocity , Female , Healthy Volunteers , Humans , Male , Predictive Value of Tests , Prospective Studies , Regional Blood Flow , Retinal Vessels/physiology , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...