Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 11(10): e2308507, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38145348

ABSTRACT

Electrode grids are used in neuroscience research and clinical practice to record electrical activity from the surface of the brain. However, existing passive electrocorticography (ECoG) technologies are unable to offer both high spatial resolution and wide cortical coverage, while ensuring a compact acquisition system. The electrode count and density are restricted by the fact that each electrode must be individually wired. This work presents an active micro-electrocorticography (µECoG) implant that tackles this limitation by incorporating metal oxide thin-film transistors (TFTs) into a flexible electrode array, allowing to address multiple electrodes through a single shared readout line. By combining the array with an incremental-ΔΣ readout integrated circuit (ROIC), the system is capable of recording from up to 256 electrodes virtually simultaneously, thanks to the implemented 16:1 time-division multiplexing scheme, offering lower noise levels than existing active µECoG arrays. In vivo validation is demonstrated acutely in mice by recording spontaneous activity and somatosensory evoked potentials over a cortical surface of ≈8×8 mm2 . The proposed neural interface overcomes the wiring bottleneck limiting ECoG arrays, holding promise as a powerful tool for improved mapping of the cerebral cortex and as an enabling technology for future brain-machine interfaces.


Subject(s)
Brain Mapping , Cerebral Cortex , Animals , Mice , Electrodes, Implanted , Cerebral Cortex/physiology , Electrocorticography , Electronics
2.
Langmuir ; 34(4): 1400-1409, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29290116

ABSTRACT

N3-functionalized monolayers on silicon wafer substrates are prepared via the controlled vapor-phase deposition of 11-azidoundecyltrimethoxysilanes at reduced pressure and elevated temperature. The quality of the layer is assessed using contact angle, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and ellipsometry measurements. At 60 °C, longer deposition times are needed to achieve monolayers with similar N3 density compared to depositions at 145 °C. The monolayers formed via the vapor phase are denser compared to those formed via a solvent-based deposition process. ATR-FTIR measurements confirm the incorporation of azido-alkyl chains in the monolayer and the formation of siloxane bridges with the underlying oxide at both deposition temperatures. X-ray photon spectroscopy shows that the N3 group is oriented upward in the grafted layer. Finally, the density was determined using total reflection X-ray fluorescence after a click reaction with chlorohexyne and amounts to 2.5 × 1014 N3 groups/cm2. In summary, our results demonstrate the formation of a uniform and reproducible N3-containing monolayer on silicon wafers, hereby providing a functional coating that enables click reactions at the substrate.

3.
Adv Mater ; 29(44)2017 Nov.
Article in English | MEDLINE | ID: mdl-29024126

ABSTRACT

Highly crystalline thin films of organic semiconductors offer great potential for fundamental material studies as well as for realizing high-performance, low-cost flexible electronics. The fabrication of these films directly on inert substrates is typically done by meniscus-guided coating techniques. The resulting layers show morphological defects that hinder charge transport and induce large device-to-device variability. Here, a double-step method for organic semiconductor layers combining a solution-processed templating layer and a lateral homo-epitaxial growth by a thermal evaporation step is reported. The epitaxial regrowth repairs most of the morphological defects inherent to meniscus-guided coatings. The resulting film is highly crystalline and features a mobility increased by a factor of three and a relative spread in device characteristics improved by almost half an order of magnitude. This method is easily adaptable to other coating techniques and offers a route toward the fabrication of high-performance, large-area electronics based on highly crystalline thin films of organic semiconductors.

4.
ACS Appl Mater Interfaces ; 9(28): 23314-23318, 2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28678470

ABSTRACT

To grow small molecule semiconductor thin films with domain size larger than modern-day device sizes, we evaporate the material through a dense array of small apertures, called a stencil nanosieve. The aperture size of 0.5 µm results in low nucleation density, whereas the aperture-to-aperture distance of 0.5 µm provides sufficient crosstalk between neighboring apertures through the diffusion of adsorbed molecules. By integrating the nanosieve in the channel area of a thin-film transistor mask, we show a route for patterning both the organic semiconductor and the metal contacts of thin-film transistors using one mask only and without mask realignment.

5.
Nat Commun ; 8: 14975, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28397852

ABSTRACT

Thin film transistors based on high-mobility organic semiconductors are prone to contact problems that complicate the interpretation of their electrical characteristics and the extraction of important material parameters such as the charge carrier mobility. Here we report on the gated van der Pauw method for the simple and accurate determination of the electrical characteristics of thin semiconducting films, independently from contact effects. We test our method on thin films of seven high-mobility organic semiconductors of both polarities: device fabrication is fully compatible with common transistor process flows and device measurements deliver consistent and precise values for the charge carrier mobility and threshold voltage in the high-charge carrier density regime that is representative of transistor operation. The gated van der Pauw method is broadly applicable to thin films of semiconductors and enables a simple and clean parameter extraction independent from contact effects.

6.
Adv Mater ; 28(36): 8007-8013, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27377034

ABSTRACT

A model that describes solvent evaporation dynamics in meniscus-guided coating techniques is developed. In combination with a single fitting parameter, it is shown that this formula can accurately predict a processing window for various coating conditions. Organic thin-film transistors (OTFTs), fabricated by a zone-casting setup, indeed show the best performance at the predicted coating speeds with mobilities reaching 7 cm2 V-1 s-1 .

7.
Adv Mater ; 28(1): 151-5, 2016 Jan 06.
Article in English | MEDLINE | ID: mdl-26542747

ABSTRACT

Transistor parameter extraction by the conventional transconductance method can lead to a mobility overestimate. Organic transistors undergoing major contact resistance experience a significant drop in mobility upon mild annealing. Before annealing, strong field-dependent contact resistance yields nonlinear transfer curves with locally high transconductances, resulting in a mobility overestimate. After annealing, a contact resistance below 200 Ω cm is achieved, which is stable over a wide V(G) range.

8.
Adv Mater ; 26(18): 2914-8, 2014 May.
Article in English | MEDLINE | ID: mdl-24677269

ABSTRACT

Organic vapor-phase deposition (OVPD) is used to grow tetraphenyldibenzoperiflanthen (DBP):C70 mixed heterojunction photovoltaic devices. Compared with vacuum thermal evaporation (VTE), the OVPD-grown film develops nanocrystalline domains of C70. Optimized OVPD-grown OPVs have a 61% fill factor for a 100 nm active layer thickness, whereas VTE-grown devices have a 47% fill factor at the same thickness.

9.
Adv Mater ; 24(12): 1535-9, 2012 Mar 22.
Article in English | MEDLINE | ID: mdl-22362580

ABSTRACT

The mechanism by which molecular dopants donate free charge carriers to the host organic semiconductor is investigated and is found to be quite different from the one in inorganic semiconductors. In organics, a strong correlation between the doping concentration and its charge donation efficiency is demonstrated. Moreover, there is a threshold doping level below which doping simply has no electrical effect.


Subject(s)
Naphthacenes/chemistry , Nitriles/chemistry , Semiconductors , Electrons
10.
J Phys Chem B ; 111(1): 139-50, 2007 Jan 11.
Article in English | MEDLINE | ID: mdl-17201438

ABSTRACT

Elementary growth processes such as kink initiation, adding a molecule to a kink, and adding a molecule between two neighboring kinks and between two grains are theoretically studied in pentacene films by adding one molecule at a time to a predefined aggregate. For each molecule, the potential energy surface is calculated using the MM3 molecular mechanics force field, which allowed one to identify useful parameters like the energy barrier for diffusion and the energy to create kinks, as well as defect configurations. Depending on the properties of the potential energy surface and the resulting growth-condition-dependent probabilities of initiating defect configurations in the film, three types of pentacene defects are identified: a thermally activated defect, an intrinsic defect, and a kinetic defect. Upon film growth, most defects relax into the ideal crystal configuration. Bulk defects that resist relaxation have densities lower than 10(16) defects/cm3 at typical growth conditions. Grain boundary defects, on the other hand, are very stable. Moreover, interstitial molecules at grain boundaries are identified as a source of compressive stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...